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ABSTRACT In a series of recent papers, Timothy Williamson has argued for the sur-
prising conclusion that there are cases in which you know a proposition in spite of its
being overwhelmingly improbable given what you know that you know it. His argument
relies on certain formal models of our imprecise knowledge of the values of perceptible
and measurable magnitudes. This paper suggests an alternative class of models that do
not predict this sort of improbable knowing. I show that such models are motivated by
independently plausible principles in the epistemology of perception, the epistemology of
estimation, and concerning the connection between knowledge and justified belief.

Gettier cases are a welcome prediction of Williamson’s models of percep-
tual knowledge.1 But his models also make some more surprising predictions
that many philosophers will find unwelcome. For example, once enriched
in the natural way to model epistemic probabilities, they predict improbable
knowing: cases in which you know a proposition in spite of its being improb-
able given what you know that you know it. Even if we should ultimately
accept this prediction (as Williamson has argued elsewhere that we should),2

it nevertheless ought to give us pause.
Another surprising prediction of Williamson’s models is pervasive illusion:

in almost all cases your surroundings are not the way that they perceptually
appear. This prediction is clearly unwelcome, since it is inconsistent with the
attractive view that, normally, the way that your surroundings perceptually
appear to you is a way that you perceive—and thereby know—them to be.

Correspondence Address: Jeremy Goodman, University of Oxford, Oxford, UK. Email:
goodman.jeremy@gmail.com

1Williamson, ‘Gettier Cases in Epistemic Logic’.
2Williamson, ‘Improbable Knowing’, ‘Very Improbable Knowing’.
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Inexact Knowledge without Improbable Knowing 31

Elsewhere Williamson has expressed sympathy for something like this view,
conjecturing that ‘in normal circumstances . . . our perceptual beliefs (those
in which we take perceptual appearances at face value) count as knowledge’.3

This conjecture is reinforced by Williamson’s general picture of knowledge as
central to our cognitive lives. According to this picture, perceiving is a kind of
knowing, belief aims at knowledge, perceptual experience stands to perceiving
as belief stands to knowing, and knowledge is commonplace. In Knowledge
and Its Limits he writes:

While belief aims at knowledge, various mental processes aim at
more specific factive mental states. Perception aims at perceiving that
something is so; memory aims at remembering that something is so.
Since knowing is the most general factive state, all such processes aim at
kinds of knowledge. If a creature could not engage in such processes
without some capacity for success, we may conjecture that nothing
could have a mind without having a capacity for knowledge.4

The last sentence of this passage even hints at a transcendental argument to
the effect that the capacity to know by perception that things are as they
perceptually appear is a necessary condition for having any perceptual experi-
ences whatsoever. Whether or not Williamson would in fact endorse such an
argument, he certainly seems to be committed to our normally being able to
know that things are as they appear.5

But can this commitment be reconciled with the inexactness of our percep-
tual knowledge? It can, if we abandon Williamson’s simplifying assumption
that perceptual appearances are maximally specific. In Section I, I demon-
strate the consistency and plausibility of this reconciliation by presenting
and defending a natural refinement of Williamson’s models in which percep-
tual appearances are not maximally specific. In Section II, I show that these
refined models also fail to predict improbable knowing. In Section III, I use
these models to develop a general strategy for resisting Williamson’s argu-
ment for improbable knowing, even in non-perceptual cases. In Section IV, I
consider three other arguments for improbable knowing and argue that they
are inconclusive. In Section V, I show that Williamson’s models of justified
belief conflict with the attractive principle that a belief is justified only if it is
the manifestation of a disposition to know. Modifying Williamson’s models
of imprecise knowledge so that they respect this connection between knowl-
edge and justified belief yields the very models that I defend in the previous
sections on independent grounds.

3Williamson, ‘Knowledge and Skepticism’, 697.
4Williamson, Knowledge and Its Limits, 48.
5Throughout, read ‘appear’ as outside the scope of ‘know’ in ‘know that things are as they
appear’.
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32 Jeremy Goodman

I. Unspecific Appearances

Let us review Williamson’s model <W, R>. The set of ‘worlds’ W is the
set of ordered pairs of real numbers; these pairs’ first and second members
respectively represent the real and apparent values of some perceived magni-
tude, such an object’s height or a surface’s brightness. We model propositions
as subsets of W. Let R(<e, f >) abbreviate {<e∗, f∗>: <e, f >R<e∗, f∗>};
R(<e, f >) is the strongest proposition known at <e, f >. In the model,
knowledge is closed under entailment: p is known at <e, f > just in case
R(<e, f >) ⊆ p. Let Kp abbreviate {<e, f >: R(<e, f >) ⊆ p}; Kp is the
proposition that p is known. Finally, let P(<e, f >) abbreviate {e∗: for some
f ∗, <e, f >R<e∗, f∗>}; P(<e, f >) is the set of values that, for all you know,
are magnitude’s real value.

The ‘epistemic accessibility relation’ R is defined as follows, relative to an
arbitrarily chosen positive constant c: ‘<e, f >R<e∗, f∗> if and only if |e∗ – f∗|
≤ |e – f | + c and [. . .] f = f∗.’ Williamson glosses this definition as follows:
‘Thus the worlds accessible from a given world are those where the apparent
value is exactly the same and the gap between it and the real value exceeds the
gap in the given world by at most the constant c.’6 More perspicuously, we
can define R to be the smallest reflexive binary relation on W satisfying the
following conditions:

Margin for Error: [e – c, e + c] ⊆ P(<e, f >).
Any value within a radius c of the magnitude’s real value is one that, for all
you know, is the magnitude’s value.

Luminous Appearances: <e, f >R<e∗, f ∗> only if f = f ∗.
You know how the magnitude appears.

Appearance Centering: For some x, P(<e, f >) = [f – x, f + x].
For every world, there is number x such that the strongest thing you know
at that world about the magnitude’s value is that it is within a radius x of
its apparent value.

This definition is equivalent to Williamson’s.
How might we modify this model to account for unspecific appearances?

The natural proposal is to interpret the second member of a world not as a
maximally specific value that the magnitude appears to have but instead as the
midpoint of the smallest interval in which the magnitude’s value appears to
lie. In particular, we assume that, for some positive constant d, a world <e, f >

represents a situation in which the magnitude has the value e and unspecif-
ically appears to lie in the interval [f – d, f + d]. Unspecific appearances

6Williamson, ‘Gettier Cases in Epistemic Logic’, 6.
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Inexact Knowledge without Improbable Knowing 33

have the potential to make an epistemic difference if we impose the following
natural constraint:

Appearance Constraint: [f – d, f + d] ⊆ P(<e, f >).
Any value of the magnitude compatible with its (unspecific) appearance is
compatible with our perceptual knowledge.

We can now define, for positive constants c and d, a new accessibility rela-
tion R∗ as the smallest reflexive binary relation on W satisfying Margin for
Error, Luminous Appearances, Appearance Centering, and the Appearance
Constraint, and explore the resulting epistemic model <W, R∗>.7

For simplicity, these models treat the ‘radius’ d of a subject’s unspecific
perceptual appearances as constant across worlds. We have reason to think
that this assumption is at least approximately correct. For example, it is an
extremely plausible psychophysical and phenomenological hypothesis that
the similarity structure of normal color experiences preserves the three-
dimensional similarity structure of colors, in terms of hue, brightness and
saturation.8 But if there were appreciable variation from case to case in
the unspecificity of perceptual appearances of hue, brightness and satura-
tion, then color experience would have a six-dimensional similarity structure,
since intervals are characterized by two numbers rather than one. The point
generalizes: if the unspecificity of our perceptual appearances of a perceptible
magnitude varied appreciably from case to case, then we would expect the sim-
ilarity structure of our perceptual appearances of the magnitude to have twice
the magnitude’s dimensionality. We will revisit this assumption in Section IV.

If d ≤ c, then R = R∗ and unspecific appearances make no epistemic dif-
ference. For concreteness, consider the model obtained by letting d = c. This
model avoids pervasive illusion, since our unspecific appearances only fail to
be veridical when their midpoint diverges from the magnitude’s real value by
more than our margin for error c. If our motivation for positing unspecific
appearances were simply to avoid pervasive illusion, we could therefore rea-
sonably claim vindication.9 But we want more. We want to vindicate not
merely the normality of things being as they appear, but the normality of
our knowing that things are as they appear. In models in where d = c, tak-
ing appearances at face value yields knowledge only in the overwhelmingly
improbable event that the magnitude’s real value is exactly equal to the mid-
point of its unspecific appearance. (It is impossible to know that things are
as they appear in models where d < c.) Therefore, if unspecific appearances
are to vindicate the normality of knowing that things are as they appear, their
unspecificity must exceed our margin for error.

7Equivalently, <e, f >R∗<e∗, f∗> if and only if |f∗ – e∗| ≤ Max{|f – e| + c, d} and f = f∗.
8See Morrison, ‘Color in a Physical World’ for discussion.
9Hellie (‘Noise’) and Stazicker (‘Attention and Indeterminacy’) posit unspecific appearances on
precisely such grounds.
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34 Jeremy Goodman

Benj Hellie draws a different moral. He thinks that adding the Appearance
Constraint allows us to drop Margin for Error.10 The resulting model would
predict that, whenever things are as they appear, we are able to know that
things are as appear. In this sense, knowing that things are as they appear
would be not merely normal but luminous (i.e., known to occur whenever it
does occur). But although Margin for Error and the Appearance Constraint
both share the consequence that our perceptual knowledge is inexact, the lat-
ter is no substitute for the former. Margin for Error is motivated not by the
inexactness of perceptual knowledge, but rather by the idea that perceptual
knowledge, like all knowledge, requires belief that is safe from error. Because
our perceptual systems are noisy, this ‘safety’ condition entails that there are
epistemically accessible cases in which the magnitude takes a value slightly
different from its actual one and yet we enjoy the same appearances that we
actually do.11 We parameterize this range of cases by c: if x is the degree to
which the midpoint of appearances diverges from the perceived magnitude’s
true value, then there is an epistemically accessible case with the same appear-
ances in which the magnitude of this divergence is x + c. In effect, c is a
measure of the epistemic impact of noise in our perceptual systems.12 This
is simply a different phenomenon from the one captured by the Appearance
Constraint, which measures the epistemic impact not of perceptual noise but
of perceptual unspecificity. Without a margin for error, there would be cases
in which a magnitude with value x is known, for some y, to have a value in the
interval [x, y]. Such knowledge is implausible in light of noise in our percep-
tual systems, assuming a safety condition on knowledge. We should therefore
retain Margin for Error. (In their contribution to this symposium, Stewart
Cohen and Juan Comesaña propose a model consistent with Hellie’s in which
Margin for Error also fails, drawing on recent work by Robert Stalnaker.13

Their proposal is therefore implausible for the same reason that Hellie’s is.)
If unspecific appearances are to vindicate the normality of our knowing

that things are as they appear, we must let d = c + b, for some positive
constant b that represents an upper bound on the size of normal devia-
tions between the magnitude’s real value and the midpoint of its unspecific
appearance. Having imposed this constraint, R∗ $= R: the unspecificity of
appearances makes an epistemic difference when it exceeds our margin for
error. We can characterize this difference as follows: if the magnitude’s real
value is within a radius b of the midpoint of its appearance, then we know

10Hellie, ‘Noise’, 495 ff.
11Making good on this claim is beyond the scope of this paper; see Williamson, ‘Probability and
Danger’.
12As Williamson writes: ‘The value of [c] will be determined by features of the visual mechanism,
such as the long-run probability of a given distance between the real and apparent [values] of the
[perceptible magnitude]’ (‘Very Improbable Knowing’).
13Cohen and Comesaña, ‘Williamson on Gettier Cases’; Stalnaker, ‘On Hawthorne and
Magidor’.
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Inexact Knowledge without Improbable Knowing 35

that things are as they appear; otherwise, the model agrees with Williamson’s.
Formally: R∗(<e, f >) is {<e∗, f >: |e∗ – f | ≤ d} if |f – e| ≤ b, and is R(<e, f >)
otherwise. Intuitively, our appearance of width 2d is built out of a ‘safe haven’
of width 2b with ‘buffer zones’ of width c on either side. As long as the mag-
nitude’s real value is in the safe haven (as it normally will be), taking our
perceptual appearances at face value yields knowledge. In particular, if the
magnitude’s value is in the safe haven, then what we know is that it is either
in the safe haven or in the surrounding buffer zones—perceptual appear-
ances and perceptual knowledge will coincide. The resulting model reconciles
the normal knowledge-conduciveness of taking our perceptual appearances
at face value and the inexactness of our perceptual knowledge owing to
perceptual noise.

While this reconciliation is surely welcome, one might have reservations
about the model’s psychological plausibility. Ned Block, when considering
the hypothesis that perceptual appearances are ‘abstract relative to other con-
tents, as determinables are to determinates, for example as red is to scarlet’,
objects that ‘the variation of 6% due to attention is way above the “just notice-
able difference” threshold, which for stimuli at these levels is approximately
2%’.14 He is referring to recent work by Marisa Carrasco and her collabo-
rators showing that the apparent brightness contrast of attended stimuli is
amplified by exogenously captured attention.15 Similar points can be made
regarding other sources of visual noise, such as small differences in apparent
brightness resulting from noise in our pupillary response. Put in terms of our
model <W, R∗>, Block’s objection is that these data show that d is smaller
than c, yet, on my proposal, it is larger.

Block’s objection that our discrimination thresholds place an upper bound
on the unspecificity of perceptual appearances seems tacitly to assume some-
thing like the principle that, if it is consistent with appearances that o1 has
magnitude m with value x and consistent with appearances that o2 has mag-
nitude m with value x, then it is consistent with what we perceive that both
o1 and o2 have magnitude m with value x. But we should reject this princi-
ple. For familiarity, let us focus on spatial magnitudes. Suppose I am looking
at two trees t1 and t2. I perceive that t1 is just the slightest bit taller than t2.
Therefore, there is no height h such that it is consistent with what I perceive
that both t1 and t2 have height h. If the aforementioned principle were true, it
would follow that the appearances of the trees’ heights must be extremely spe-
cific, since every height not ruled out for t1 must be ruled out for t2 and vice
versa. But this is not what normally happens in such cases. The perception
of differences with respect to some perceptible magnitudes is a distinct cog-
nitive achievement from, and often does not go by way of, one’s perceptions

14Block, ‘Attention and Mental Pain’, 52.
15Carrasco, Ling, and Read, ‘Attention Alters Appearance’.
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36 Jeremy Goodman

of the magnitudes that differ. We might naturally describe the tree case as fol-
lows: t1 appears to be between 20 and 25 feet tall, t2 appears to be between
19 and 24 feet tall, t1 appears to be about a foot taller than t2, and taking all of
these appearances at face value yields knowledge. Our powers of discrimina-
tion often significantly outstrip our powers of detection, and there is nothing
mysterious about this phenomenon.16

II. Epistemic Probability

A proposition’s epistemic probability is how likely it is given what you know.
Let us now consider what predictions <W, R> and <W, R∗> make about
epistemic probabilities.

It helps to think spatially. Think of elements of W as points in the Cartesian
plane, the horizontal and vertical axes of which correspond, respectively, to
the perceived magnitude’s real value and to its apparent value (or the mid-
point of its appearance, as appropriate). Think of propositions as regions in
this plane. We have defined R in such a way that R(<e, f >) always corre-
sponds to a horizontal line segment in this plane centered on <e, f >; the
same is true of R∗(<e, f >). This fact allows us to use the natural length mea-
sure on line segments to define epistemic probabilities. For example, for any
proposition p whose intersection with the line segment R(<e, f >) is also a
line segment, let the epistemic probability of p at <e, f > in <W, R> equal the
ratio of the length of this segment to the length of R(<e, f >). In general, the
epistemic probability of a proposition p at a world <e, f > in <W, R> is the
ratio of the total length of p’s intersection with R(<e, f >) to the total length
of R(<e, f >).17 The same goes, mutatis mutandis, for R∗.

So interpreted, Williamson’s model <W, R> predicts improbable know-
ing. Consider an arbitrary world <e, e> in which appearances exactly
match reality. R(<e, e>) = {<e∗, e>: |e∗ – e| ≤ c}, which in the Cartesian
plane corresponds to the horizontal line segment with midpoint <e, e> and
length 2c. This is the strongest proposition known at <e, e>. Now consider
KR(<e, e>), the proposition that R(<e, e>) is known. It is straightforward

16The normality of appreciably unspecific appearances has non-trivial consequences in the phi-
losophy of perception. For example, it is inconsistent with Michael Tye’s identification of blurry
vision with appreciable unspecificity in the visual appearances of the locations of objects’ bound-
aries (since normal vision need not be blurry) (Tye, ‘Blurry Image’). There are also strong
independent grounds for rejecting Tye’s view; see Allen, ‘Blur’.
17In general, we let the epistemic probability of p at <e, f > in <W, R> be
λ(p ∩ R(<e, f >))/λ(R(<e, f >)), where λ is the one-dimensional Lebesgue measure on the
horizontal line through <e, f >. (If this quantity is undefined at any world, we let the
epistemic probability of p be undefined at every world.) This induces a function from
worlds to probability functions on the sub-algebra of propositions all of whose horizon-
tal cross-sections are measurable, which includes all of the propositions that we will be
concerned with.
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Inexact Knowledge without Improbable Knowing 37

to verify that KR(<e, e>) = {<e, e>}. So the strongest proposition known at
<e, e> is known only at <e, e>. By the factivity of knowledge, the intersec-
tion of KR(<e, e>) and R(<e, e>) is just KR(<e, e>) itself, i.e., {<e, e>},
which has length 0. Therefore, the epistemic probability of KR(<e, e>) at
<e, e> in <W, R> = 0/2c = 0. R(<e, e>) is known at <e, e> even though
at <e, e> it has epistemic probability 0 of being known. So <W, R> predicts
not just improbable knowing but maximally improbable knowing.

Here is a more intuitive gloss on what is going on. In Williamson’s model,
as appearance and reality converge you get to know more and more about
the perceived magnitude. As your epistemic achievement grows, it becomes
less and less likely that you have managed such a feat. When appearances
and reality match perfectly, what you know about the value of the magnitude
could not be known in any other circumstances. Since infinitely many other
circumstances are still epistemically accessible, your knowledge is maximally
improbable. Williamson gives the following helpful heuristic: ‘propositions
known in only one world generate cases where the agent knows a truth p even
though it is virtually certain on her own current evidence that she does not
know p’.18 Here is another helpful heuristic: in these models, when appear-
ances match (or are centered on) reality, you get to know as much as it is pos-
sible to know about the perceived magnitude, and your knowledge is therefore
as improbable as one’s knowledge of the perceived magnitude can be.

Let us now turn to our model <W, R∗>. Consider again <e, e>,
which now represents a world in which the magnitude’s value lies
halfway between the minimal and maximal values consistent with
its appearance. R∗(<e, e>) = {<e∗, e>: |e∗ – e| ≤ d} and KR∗(<e, e>) =
{<e∗, e>: |e∗ – e| ≤ b}, as discussed in Section I. In other words, the perceived
magnitude is known to be as it appears in <e, e>—i.e., to have a value some-
where in the interval [e – d, e + d]—just in case its value e∗ is in the safe haven
[e – b, e + b]. By the factivity of knowledge, the intersection of R∗(<e, e>)
and KR∗(<e, e>) is just KR∗(<e, e>) itself, which in the Cartesian plane cor-
responds to the horizontal line segment with midpoint <e, e> and length 2b.
Therefore, the epistemic probability of KR∗(<e, e>) at <e, e> in
<W, R∗> = 2b/2d = b/(b + c).

The same holds for any world in which reality lies in the safe haven of the
appearance: if |f – e| ≤ b, then the probability of KR∗(<e, f >) at <e, f > in
<W, R∗> = b/(b + c). For all other <e, f >, the probability of KR∗(<e, f >)
at <e, f > in <W, R∗> is equal to the probability of KR(<e, f >) at <e, f >

in <W, R>: outside the safe haven, the two models agree on the probability
of knowing the proposition that is in fact the strongest proposition known.
We can think of <W, R∗> as dividing worlds into the normal, ‘good’ cases
where we know things to be as they appear, and the abnormal, ‘bad’ cases

18Williamson, ‘Gettier Cases in Epistemic Logic’, 8.
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38 Jeremy Goodman

where we do not. The model agrees with Williamson’s on the bad cases as
regards the strongest proposition known and the probability that it is known.
But in the good cases, the strongest proposition known is almost always
weaker than in Williamson’s model, owing to unspecific appearances, and the
probability that it is known is b/(b + c).19

So, in general, if R∗(<e, f >) ⊆ p, then the epistemic probability of
Kp at <e, f > in <W, R∗> is at least b/(b + c) (assuming it is defined). In other
words, our model predicts a lower bound of b/(b + c) on the epistemic prob-
ability of knowing a proposition that is in fact known. Therefore, so long as
b ≥ c, our model predicts no improbable knowing—no known proposition
has less than 0.5 epistemic probability of being known. Let us now explore
how b and c might be related.

As we observed earlier, both our margin for error c and the upper bound
b on the size of normal deviations between the magnitude’s real value and
the midpoint of its appearance in effect parameterize the same quantity—
namely, the amount of noise in our perceptual system. It is therefore natural to
suppose, as an initial working hypothesis, that b = c. On this hypothesis, our
model predicts no improbable knowing. Instead, it predicts that, in normal
cases, the strongest proposition that we know about the magnitude’s value
has epistemic probability 0.5 of being known.

It is unclear how much comfort this will bring to those strongly inclined to
reject improbable knowing. Is the compatibility of knowledge and epistemic
probability 1 of ignorance predicted by Williamson’s model significantly
less plausible than the compatibility (and indeed normality) of knowledge
and epistemic probability 0.5 of ignorance predicted by mine? I think it is.
A proposition’s having 0.5 epistemic probability is compatible with it being
rational to invest significantly more confidence in it than in its negation;
the connection between epistemic probability and rational confidence is not
straightforward.20 Indeed, there is reason to expect such divergence in this
case, since it is plausible that our ‘confidence density’ should be centrally
‘peaked’, in contrast to the ‘flat’ probability density function used to model
epistemic probabilities.21

Those who think that we can know only propositions that have at least
epistemic probability x of being known, for some x > 0.5, could of course
achieve this result by replacing our working hypothesis that b = c with a
stipulation that b/(b + c) = x. Williamson might complain that such stip-
ulations are objectionably ad hoc—that such a blatant reverse engineering
of our philosophy of mind to fit an antecedently preferred epistemology of

19Notice that this dichotomy classifies some veridical experiences as bad cases; compare Mark
Johnston’s discussion of ‘veridical illusion’. Johnston, ‘Better Than Mere Knowledge?’.
20See Williamson’s reply to Mark Kaplan. Williamson, ‘Replies to Critics’.
21Morrison, ‘Perceptual Confidence’.
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Inexact Knowledge without Improbable Knowing 39

perception is not credible. We need to be careful how we construe this objec-
tion. Epistemology can inform the philosophy of mind, as it does prominently
in Knowledge and Its Limits and centrally in Section I above. (‘Knowledge
first’, to use Williamson’s slogan.) So the objection cannot be merely a com-
plaint about reverse engineering. There is something else problematic about
such stipulations. If we simply identify b and c, then our model has only one
free parameter, c, the choice of which makes no difference to the model’s
structure. But if we allow ourselves to independently choose b and c as we
see fit, the structure of our model will depend on how we make the choice.
In general, we should prefer models that limit such choice points, both
on grounds of simplicity and because the more such choices we make the
more likely it is that they will turn out to conflict with each other. I leave
readers to judge for themselves how compelling such considerations are in
this case.

At any rate, there are non-ad hoc reasons to think that b should be at least
somewhat greater than c. I will now give an argument that b should be approx-
imately twice c.22 If this argument is sound, it predicts that the lower bound
on (and normal value of) the epistemic probability of knowing the strongest
proposition that one in fact knows is approximately 2/3—an ‘improvement’
on 0.5, many might say. The argument proceeds from the same thought that
motivated the hypothesis that b = c—namely, that both parameters should
encode the same degree of deviation from cases in which the parameter’s
appearance is centered on its real value—but advocates an alternative way
of representing this thought formally. The informal idea is to understand ‘the
same degree of normal deviation’ in probabilistic terms. Instead of simply
equating b and c, we should choose their relative values so that both parame-
ters make the same probabilistic contribution as regards the objective chances
of different degrees of divergence between appearance and reality.

Assume that good cases—those in which we know that things are as they
appear—are objectively probable. Let π be the small objective chance of bad
cases. Since the good case is the normal case, we count a case as normal just
in case π is less than or equal to the objective chance of the magnitude’s
real value and the midpoint of its appearance diverging by the amount that
they do in that case. In terms of our model, we choose b so as to make the
objective chance of the magnitude’s real value differing by more than b from
the midpoint of its appearance equal to π . We want c, our margin for error,
to make the same probabilistic contribution as b, namely π . While b concerns
the normal range of divergence from circumstances in which appearances are
centered on reality, c concerns the potential for this divergence to be more
extreme than it in fact is. We model this idea by letting c vary from world to
world as a function of the difference between the magnitude’s real value and

22This and the following three paragraphs can be skipped without loss of continuity.
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40 Jeremy Goodman

the midpoint of its appearance. For every world <e, f >, we choose c at that
world so as to make π be the objective chance of the magnitude’s real value
and the midpoint of its appearance differing by at least |f – e| + c given that
they differ by at least |f – e|.

To represent this proposal formally, we need to enrich our models with a
probabilistic threshold π and a probability density function Ch representing
the objective chances of different degrees of divergence between the magni-
tude’s real value and the midpoint of its appearance. We assume that Ch
approximates a Gaussian distribution (a ‘bell curve’) centered on 0. Assume
further, for simplicity, that this distribution does not depend on the magni-
tude’s value. Let δ be a random variable standing for the difference between
the magnitude’s real value and the midpoint of its appearance. We can now
represent our stipulation about b by the equation Ch(|δ| > b) = π . We cap-
ture the above proposal about c by letting it vary from world to world in
accordance with the equation Ch(|δ| > |f – e| + c(<e, f >) | |δ| ≥ |f – e|) = π .
We keep our definition of R∗ as before. The only difference is that c and d are
now parameterized by π and Ch, and c is now a function of |f – e|. In this
enriched model, c makes the same probabilistic contribution as b in the sense
that, however objectively improbably the midpoint of appearances diverges
from reality, our margin for error ensures that, for all we know, something
even more objectively improbable (by a factor of π ) has happened.

As before, we choose the radius d of the magnitude’s appearance so that
R∗(<e, f >) = {<e∗, f >: |e∗ – f | ≤ d} just in case |f – e| ≤ b. This requires
letting d = b + c(<e, e + b>), for some e. (The choice of e is arbitrary since
c(<e, f >) depends only on |f – e|.) Equivalently, and more perspicuously:
Ch(|δ| > d) = π 2. In this class of enriched models, given reasonable (small)
values for π , b will be approximately twice c, and therefore the lower bound
on the epistemic probability of knowing a proposition that one in fact knows
will be approximately 2/3.23 For those familiar with confidence intervals in
statistics, the intuition behind this result is this: for Gaussian distributions
and reasonable ‘p-values’ π , the width of a confidence interval with p-value π

is approximately 2/3 the width of a confidence interval with p-value π 2.
Before moving on, I should mention that one could hold a view according

to which the lower bound x on the probability of knowing a proposition that
is in fact known is subject- and/or context-sensitive—perhaps because what
counts as ‘normal’ is a subject- and/or context-sensitive matter. For example,
on the subject-sensitive version of the proposal, margins for error vary with
the circumstances. In ‘anti-skeptical’ circumstances, c will be much less than d,
x is close to 1, and we can knowledgeably take almost all veridical experiences
at face value. In the anti-skeptical limit where our margin for error c = 0, we

23For example, for π = 0.1, c = 0.57b and this lower bound is 0.64; for π = 0.01, c = 0.51b and
the lower bound is 0.66.
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Inexact Knowledge without Improbable Knowing 41

end up with the Hellie/Stalnaker/Cohen-Comesaña model mentioned previ-
ously, according to which being in a good case is a luminous condition. As we
move to more ‘skeptical’ circumstances, our margin for error c grows and x
shrinks. Indeed, as discussed in Section I, once c reaches (and after it exceeds)
d we end up with Williamson’s original models in which x = 0; i.e., in which
there is maximally improbable knowing. Whether merely confining maximally
improbable knowing to skeptical circumstances strikes philosophers leery of
the phenomenon as an acceptable result I leave for them to judge. Parallel
considerations apply to contextualist versions of the proposal.

III. Beyond Perception

The considerations discussed thus far were specific to perception. Can we use
them to construct a general strategy for resisting improbable knowing? The
prospects for such a generalization initially look dim. Williamson’s models
are intended to characterize not only our perceptual knowledge but also our
knowledge of the values of continuous magnitudes (like temperature) gained
by using measurement devices (like thermometers) whose readings deviate
from the magnitudes’ true values as a result of random noise. The magni-
tude of this noise often far outstrips the specificity of such readings—consider
the fluctuations in the rightmost digits of many digital scales. In other words,
the precision of such scales clearly outstrips their accuracy. The degree of
imprecision in their measurements, if any, is swamped by the margin for error
governing our measurement-based knowledge. Now recall that, when we were
modeling perceptual knowledge, <W, R> = <W, R∗> whenever c was greater
than d. Unspecific appearances made no epistemic difference when they were
swamped by perceptual noise: maximally improbable knowing was preserved.
There is therefore a strong prima facie case for thinking that, whatever our
account of perceptual knowledge, the fact that noisy scientific instruments
sometimes yield extremely improbably accurate readings guarantees at least
some cases of extremely improbable knowing.24

While there are undeniably superficial differences between taking unspecific
perceptual appearances at face value and gaining inexact knowledge of the
temperature by reading an overly precise thermometer, these differences do
not mandate asymmetry at the level of deep epistemic structure. We need
to think more carefully about the causal processes underlying the sort of
noise that pervades measuring instruments. I will proceed in two stages.
First, I argue that Williamson’s model makes incorrect predictions about

24Some will resist improbable knowing in these non-perceptual cases by denying that we can
ever gain knowledge of the temperature by reading a thermometer. Perhaps they follow Hume
in holding that, although we can have non-inferential empirical knowledge, induction is always a
matter of mere probabilities. I agree with Williamson that such views are objectionably skeptical,
and so will set them aside.
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42 Jeremy Goodman

our instrument-based knowledge. Second, I offer a different account of
our instrument-based knowledge, motivating it with informal examples, and
drawing out its formal parallels with our model of perceptual knowledge <W,
R∗>.

III.i. Against Williamson’s model

Suppose that our noisy digital scale is unbiased and subject to approximately
Gaussian noise, in the following sense. The scale produces a new reading every
second, and its reading on any given occasion of measurement is probabilisti-
cally independent of its previous readings, where the probabilities in question
are objective chances. These reading are characterized by a Gaussian prob-
ability density function—a ‘bell curve’ centered on the object’s true weight.
In other words, every time the scale gives a reading, the probability that the
reading is in the interval [x, y] is equal to the area under this curve between
x and y. If one waits long enough, then with probability 1 the normalized
histogram of accumulated readings will approximate the bell curve to an
arbitrary degree of accuracy.

The tails of the bell curve never drop off to zero, so errors of any size have
some positive objective chance.25 Yet, on pain of skepticism, we surely know
something about what the scale will read when we weigh a tennis ball—e.g.,
we know that it won’t register over 1,000 pounds. Knowing a proposition is
therefore compatible with knowing that its negation has some positive objec-
tive chance. Furthermore, how much we can know depends in part on how
sharply the bell curve is peaked. This ‘width’ of a bell curve is characterized
by its standard deviation: the distance from its center to the inflection points
on either side where the curve switches from being concave-down to concave-
up. Insofar as what we can know about the scale’s next reading is sensitive to
the probabilistic profile of the setup, we can assume that it is sensitive only
to the distribution’s mean (which will be equal to the weighed object’s true
weight, since the scale is unbiased) and standard deviation, since a Gaussian
probability density function is fully characterized by its mean and standard
deviation.

I am assuming an approximately Gaussian distribution because such
distributions are what we normally find in practice. This is no coinci-
dence: processes that aggregate the results of a large number independent
random processes will be characterized by approximately Gaussian proba-
bility distributions even if their component processes are not characterized
by even approximately Gaussian distributions.26 The best demonstration of
this principle is the Galton board (Figure 1). A ball is dropped into a lattice

25This is an idealization, since, for example, there may be no chance of the scale indicating a
negative weight. But the idealization is harmless for present purposes.
26This is a consequence of the Central Limit Theorem.
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Inexact Knowledge without Improbable Knowing 43

Figure 1. The Galton Board.

Source: Wikipedia.

of pegs. At every row, the ball has an equal probability of being deflected to
the left or to the right. How it is deflected at one row is independent of how
it was deflected on previous rows. The chance distribution characterizing the
accumulation of these random deflections will be an approximately Gaussian
distribution, as evidenced by the histogram generated by accumulated balls
dropped from the same location. Indeed, in the infinite limit, the resulting
distribution is exactly Gaussian. We approach this limit by repeatedly halv-
ing the spacing between the pegs while quadrupling the number of rows; this
preserves the distribution’s standard deviation.27

The source of the Gaussian noise we find in our scientific instruments is
likewise the aggregation of a large number of independent random processes.
So let us take the Galton board as our model. We will model our answer to the
question what we can know about the next reading of our noisy scale on our
answer to the question what we can know about where a ball will land when
dropped into the Galton board. The cases are admittedly causally asymmet-
ric. In the case of the scale, we infer causes from effects, while, in the case of
the Galton board, we infer effects from causes. But this causal difference does
not make an epistemic difference.28 In this setting, Williamson’s constraint

27In the infinite limit the balls’ trajectories become Wiener processes, the mathematical idealiza-
tion of Brownian motion.
28If you are worried that it might make a difference, substitute the following setup for the Galton
board: Zeus throws down light bolts and they bounce off the clouds like balls bounce off the pegs
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44 Jeremy Goodman

that ‘any increase in the gap between appearance and reality has an epistemic
cost for the agent: more knowledge is lost’29 corresponds to the following
prediction about the Galton board: how much we can know about where
the ball will land is a monotonically decreasing function of the horizontal
displacement between where it will in fact land and where it is dropped.

For Galton boards with enough rows, Williamson’s anti-skepticism will
presumably lead him to think that in cases in which the ball will fall straight
down the middle we know something non-trivial about where it will land.
(For simplicity, we can assume that the board has an even number of rows
and ignore where the ball’s trajectory passes odd numbered rows. If you
are worried that knowledge of the future raises special difficulties, we could
instead consider a ball that has already been dropped but whose landing loca-
tion has not yet been observed.) More generally, if Williamson’s model <W,
R> aptly characterizes our knowledge of balls dropped into Galton boards,
then the strongest thing we can know about where a given ball will land is
that it will land within a radius x + c of where it was dropped, where x is
the (horizontal) displacement between where it is dropped and where it will in
fact land and the margin for error c is determined by the standard deviation
of the approximately Gaussian chance distribution over bins at the bottom
of the board. Since the noise in normal scientific instruments is the result
of processes relevantly analogous to the many deflections a ball takes as it
falls through a lattice of pegs, Williamson’s model must correctly describe
our knowledge of where a ball dropped into a Galton board will land if it is
to correctly describe the unspecific knowledge we gain through the normal
use of scientific instruments.

But Williamson’s model does not correctly describe our knowledge in the
case of the Galton board. It incorrectly predicts that what we can know
about where the ball will land is a function of where it will in fact land. But
there is no such function. What we can know about where the ball will land
depends not only on where it will land but also on the details of its trajectory.
Williamson’s model fails to account for this dependence.

This trajectory-sensitivity is a consequence of the extremely plausible
assumption that, if a falling ball passes any row at a horizontal displacement
of n pegs from where it was dropped, then, for all we know, it lands n pegs
from where it was dropped. For example, if on row 82 the ball will fall through
the 11th gap to the right of where it was dropped, then for all we know the
ball will land 11 gaps to the right of where it was dropped.

To see the problem for Williamson’s model, consider a case in which
the ball will fall straight down and land directly below where it was
dropped. By the aforementioned anti-skeptical principle, in this case we know

of a Galton board. We see that the tree next to us was just struck by lightning. What are we now
in a position to know about where in the sky Zeus is, assuming we antecedently had no idea?
29Williamson, ‘Gettier Cases in Epistemic Logic’, 6.
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Inexact Knowledge without Improbable Knowing 45

something non-trivial about where the ball will land. By the analogue of
Appearance Centering, there is a distance x such that, in this case, what we
know about where the ball will land is that it will land no more than x from
where it was dropped. Now consider a case in which the ball veers off to
the right and then back to the left such that it lands directly below where it
was dropped and, on some even-numbered row, the ball will be horizontally
displaced from where it was dropped by more than x. The above principle
of trajectory sensitivity, together with the analogue of Appearance Centering,
now entail that in this case we do not know that the ball will land no more than
distance x from where it was dropped. So what we know about where the ball
will land is not a function of where it will land. A fortiori, it is not a mono-
tonically decreasing function of the horizontal displacement between where
it lands and where it was dropped: Williamson’s model fails to accurately
characterize our knowledge in the case of the Galton board. Since Galton
boards are relevantly analogous to the instruments we normally use to mea-
sure physical magnitudes, Williamson’s model fails to accurately characterize
our inexact knowledge of physical magnitudes that results from the use of
such instruments.

(One might try to get around this argument by stipulating that c—the
radius of what we know about where the ball will land in cases where it falls
straight down—is greater than half the number of rows of the Galton board.
The idea is to rule out the existence of a trajectory where the ball veers to
the right by more than c and then veers all the way back. This strategy fails
because c is a function of the standard deviation of the Galton board’s charac-
teristic bell curve. And as mentioned above, quadrupling the number of rows
while halving the distance between pegs preserves this standard deviation, but
it doubles the total distance the ball travels as it is deflected back and forth.
This operation guarantees the existence of a Galton board with enough room
for the ball to make the necessary return trip.)

Williamson’s model fails to do justice to the complexities characteristic
of our knowledge of physical magnitudes gleaned through the use of noisy
instruments, because it collapses all cases in which readings and reality agree
into a single world. Such cases can differ epistemically: the inner workings
of the measurement process can generate Gettier-like ignorance when, unbe-
knownst to us, our instrument’s reading is accurate because two independent
abnormal processes happened to cancel out. Such abnormalities can pre-
vent our true predictions from amounting to knowledge. In so doing, they
undermine the principle Williamson uses to argue for improbable knowing—
namely, that an ‘agent’s ignorance increases as the gap between appearance
and reality widens’. In the case of our noisy scale, this is simply not true.

Williamson could repair his argument for improbable knowing by find-
ing some parameter other than the gap between appearance and reality such
that our ignorance is a monotonically increasing function of this parameter
and, in some world where this parameter achieves a particularly low value,
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46 Jeremy Goodman

the epistemic probability that it achieves such a low value is low. But it is
hard to identify any natural parameter of Galton-board trajectories of which
our ignorance is a function; one can always concoct pairs of trajectories that
agree on the candidate parameter but intuitively differ as regards what we can
know. Rather than speculating about such parameters, I now give an alterna-
tive account of our instrument-based knowledge of physical magnitudes. As it
happens, this alternative account does not predict improbable knowing.

III.ii. Normality

I know that I have a next-door neighbor, but I have not met her. How much
can I know about her height? Presumably I know something non-trivial about
her height—for example, I know that she is not over eight feet tall. But it is
very odd to think that the closer she is to the median adult female height the
more I am in a position to know about how tall she is. It seems much more
natural to suppose that, as long as she has a normal height, what I know is
that she does not have an extraordinary height.

This thought—that we do not get extra epistemic credit for getting closer
and closer to some paradigm case—is especially strong in situations where it is
not clear what the paradigm case would even be. For example, how much can
I know about how recently my friend Peter did laundry? On a simple way of
forcing this case into something like the <W, R> model we end up predicting
that the more recently Peter did laundry the more I can know about how
recently he did it. But this prediction is implausible. We are strongly inclined
to think that whether (unbeknownst to me) Peter did laundry yesterday or
the day before makes no difference to what I can know about how recently
he did laundry. It is much more natural to think that, as long as it has not
been abnormally long since he last did laundry, what I know is that it has
not been extraordinarily long since he last did laundry. Perhaps it is normal
to have done laundry in the past three weeks and extraordinary not to have
done laundry in the past two months. Assuming so, my proposal is that, as
long as Peter has done laundry in the last three weeks, what I know about
when he last did laundry is that it was some time in the past two months.
Maybe in cases where he has not done laundry in the past three weeks my
ignorance about the time since he last did laundry is a monotonic function
of the time since he last did it. But all normal cases are epistemically alike as
regards my knowledge of the time since he last did laundry.

This sort of picture generalizes. If things are normal, then what you know is
that they aren’t extraordinary; if things aren’t normal, you know less. Notice
that <W, R∗> has just this character if we think of the ‘good cases’ as
normal and of illusion as extraordinary. In the case of the Galton board,
we might similarly classify trajectories as normal and extraordinary. If the
ball will take a normal trajectory, what you know is that it will not take
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Inexact Knowledge without Improbable Knowing 47

an extraordinary trajectory; if not, you know less. Considerations of nor-
mality supersede considerations of the divergence between appearance and
reality. Such divergence may constrain normality: for example, any trajectory
by which the ball lands 10 standard deviations from where it was dropped
is abnormal, and indeed extraordinary. But as we saw, there can also be
extraordinary cases in which the ball ends up right where it started. The same
goes for measuring devices. Certain deviations between real and measured
values are always abnormal, and certain of these are always extraordinary.
But there can also be extraordinary cases where real and measured values
coincide, even if the underlying peculiarities are inaccessible to us.

As we saw in Section II, the upshot of such models for issue of improbable
knowing depends on the ratio of the measure b of the set of normal accessible
worlds to the measure d of the set of non-extraordinary accessible worlds.
It is hard to address this issue in abstraction from any particular setup. But
insofar as improbable knowing is antecedently implausible, it does not seem
objectionably ad hoc to conjecture that b/d will always exceed 0.5—in effect,
that when things are normal, it is as least as epistemically probable as not
that they are normal.30 If the foregoing account is correct, then, although
forming beliefs about the temperature on the basis of a noisy thermometer is
psychologically quite unlike taking perceptual appearances at face value, this
difference does not preclude a similarity at the level of epistemic structure.
Williamson’s case for improbable knowing is at best inconclusive.31

IV. Resisting Improbable Knowing

Other arguments can be given in support of the possibility of improbable
knowing. Suppose I know each of a collection of propositions, but for each
of them I fail to know that I know it. From these propositions I competently
deduce their conjunction. The epistemic probability of my knowing this con-
junction is low, even though each of its conjuncts is such that the epistemic
probability of my knowing it is high. Assuming that knowledge is closed
under competent deduction, I will know the conjunction even though it will
be epistemically improbable that I know it. Since such cases are possible, so is
improbable knowing.

This argument is dialectically weak. Philosophers inclined to resist improb-
able knowing tend to be those who also deny that knowledge is closed under

30Williamson disagrees; see his ‘Response to Cohen, Comesaña, Goodman, Nagel, and
Weatherson’.
31One might be tempted to go further and identify the non-normal worlds with the extraordinary
worlds; this is akin to the Hellie/Stalnaker/Cohen–Comesaña proposal, and would render nor-
mality luminous. Insofar as Williamson’s influential anti-luminosity argument is successful, this
temptation will have to be resisted; nothing I have said threatens the application of that argument
to normality.

D
ow

nl
oa

de
d 

by
 [t

he
 B

od
le

ia
n 

Li
br

ar
ie

s o
f t

he
 U

ni
ve

rs
ity

 o
f O

xf
or

d]
 a

t 0
8:

06
 2

5 
A

pr
il 

20
13

 



48 Jeremy Goodman

competent deduction. Indeed, they tend to be philosophers who are generally
skeptical of epistemic logic because of the idealizations that it involves—for
example, that we know every logical consequence of any set of propositions
that we know. They will respond to this argument with a shrug.

By contrast, Williamson’s argument for improbable knowing cannot be so
easily dismissed. For while one might reasonably doubt whether knowledge is
always closed under competent deduction, it is extremely hard to deny that,
when looking at a tree (for example), I know the conjunction of every propo-
sition that I know about how tall the tree is. It is bizarre to suppose that,
although I perceive that the tree is between 90 and 105 feet tall and I perceive
that the tree is between 95 and 110 feet tall, I fail to perceive that the tree is
between 95 and 105 feet tall. For a particular perceived or measured magni-
tude, our knowledge of propositions about the magnitude’s value is normally
closed under conjunction. Denying closure is therefore not a plausible way
to resist Williamson’s argument for improbable knowing from the inexact-
ness of simple perceptual and instrument-based knowledge. His argument
is important because it does not assume that knowledge is generally closed
under competent deduction.

Another argument for improbable knowing appeals to the anti-luminosity
of appearances. The models we have been considering predict that we know
the exact width and midpoint of our unspecific perceptual appearances. But
this is an idealization. In a more realistic model, we might introduce epistem-
ically accessible worlds in which our appearances have different widths and
midpoints than they actually have. Consider a world w where taking appear-
ances at face value yields knowledge. Let p = {w∗: for all x, if it is consistent
with appearances in w∗ that the perceived magnitude has value x, then it is
consistent with appearances in w that the magnitude has value x}. By the
Appearance Constraint, KR(w) ⊆ p. But by plausible symmetry considera-
tions concerning our ignorance of the width and midpoint of our unspecific
appearance, the epistemic probability of p at w is less than 0.5. Therefore,
together with the Appearance Constraint, the anti-luminosity of appearances
generates improbable knowing.

This argument has the same weakness as the argument from closure.
It relies on modeling knowledge as a universal quantifier over a set of
epistemic possibilities—something that anyone who rejects closure already
denies. Absent some further story, no one who rejects closure need feel com-
pelled by it. To be clear, I am not denying the principle that knowledge is
closed under competent deduction, nor am I denying that the principle’s intu-
itive appeal lends some support to improbable knowing. I am merely noting
a sociological fact about contemporary epistemologists: these two arguments
are unlikely to win improbable knowing many converts.

A potentially more persuasive argument for improbable knowing attempts
to rehabilitate Williamson’s original argument. Suppose we concede that
Williamson’s model <W, R> does not characterize the actual structure of our
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Inexact Knowledge without Improbable Knowing 49

perceptual and instrument-based knowledge, because of the unspecificity of
our perceptual appearances and the internal structure of the processes respon-
sible for the noise in our scientific instruments. Arguably, it is nevertheless
possible that there be agents with maximally specific noisy appearances, and
possible that there be scientific instruments subject to noise as a primitive mat-
ter of fundamental physical law without any underlying mechanism. In such
circumstances, my strategies for resisting Williamson’s argument would be
unavailable. So improbable knowing is arguably possible.

This argument concedes a great deal. Williamson argues not merely that
improbable knowing is possible, but that it is commonplace. That improbable
knowing might be widespread is part of what makes Williamson’s argument
so striking. The mere possibility of improbable knowing is not uninteresting,
but it is much less disruptive to our general epistemological worldview if it
can be confined to counterfactual situations.

In any case, both the perceptual and instrumental horns of this argument
can be resisted. Regarding perception, as mentioned at the outset, one might
think that it is part of the nature of perceptual appearances that they nor-
mally yield knowledge when taken at face value. If so, perhaps one could
give a transcendental argument against the possibility of maximally specific
noisy appearances. Regarding instruments, while perhaps there could be a
thermometer that was subject to noise due to some alien and capricious law
of nature, it is debatable whether we could use such a thermometer to gain
knowledge of the temperature (as opposed to knowledge merely of the prob-
abilities of various ranges of temperatures). Perhaps such knowledge depends
on the divisibility of measurement episodes into normal, abnormal, and
extraordinary as sketched in the previous section, and such physical laws may
not support such a division. These considerations are of course speculative,
but so too are the proposals to which they are addressed.

In any case, a more principled reply can also be given. Even if our percep-
tual appearances were maximally specific and our measurement devices were
subject to noise that lacked any mechanistic basis, there would still be reason
to deny that the structure of our knowledge was captured by <W, R>. The
reason has to do with certain plausible general principles connecting knowl-
edge and justified belief. These principles are the subject of the next section.
They support a general argument against improbable knowing, in contrast to
the case-by-case arguments of the preceding sections.

V. Justification and Dispositions to Know

Consider the following general strategy for modeling justified belief. We begin
by laying down some constraints on what an agent knows, such as Margin
for Error and Appearance Centering. We then consider an agent who knows
everything that she can. Formally, this is achieved by defining epistemic
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50 Jeremy Goodman

accessibility as the smallest reflexive binary relation on worlds consistent with
the constraints we have laid down. (We have to make sure that our constraints
define such a relation.) We assume that what our agent has justification to
believe depends only on her appearances, perhaps because she cannot help
having beliefs that depend only on her appearances. Moreover, we assume
that, necessarily, our agent has justification to believe everything that she
knows. It follows that, in any world, our agent has justification to believe
everything that she knows in some world with the same appearances. And
this is all that she has justification to believe, since any further beliefs could
not possibly amount to knowledge given her appearances, and so would be
mere speculation.

Formally, we implement this strategy by defining the doxastic accessibil-
ity relation S as follows: <e, f >S<e∗, f ∗> if and only if, for all e∗∗, <e∗∗,
f >R<e∗, f ∗>. Informally, the doxastically accessible worlds are those that
are consistent with what is known in every world in which our agent has the
same appearances that she actually has. For the class of models with which
Williamson is concerned, this definition of doxastic accessibility agrees with
his. The agent has justification to believe all and only the propositions true
in all doxastically accessible worlds, and she believes all and only the proposi-
tions that she has justification to believe. In this sense, she is perfectly rational.
Notice that doxastic accessibility can be read off the structure of epistemic
accessibility. Justified belief is thereby characterized in terms of knowledge.

The doxastic accessibility relation induced in this way by Williamson’s
model <W, R> is the following: S(<e, f >) = R(<f , f >) =
{<e∗, f >: |f – e∗| ≤ c}. In every world, the strongest proposition that
the agent believes is identical to the strongest proposition that she knows in
the world with the same appearances in which appearances matches reality,
which is in turn identical to the proposition that appearances are as they in
fact are and the magnitude’s value differs from its appearance by no more
than the margin for error c. At the end of the last section, we were considering
whether <W, R> accurately describes any possible agents’ perceptual or
instrument-based knowledge. I will now give an argument that it does not.

A belief is justified if it is well directed at its aim. Since the aim of belief
is knowledge, it is natural to think that a belief is justified just in case
it manifests a disposition to know in normal circumstances. This thought
has considerable appeal, especially within Williamson’s framework in which
knowledge is taken as the basic notion in terms of which justification is to be
explained. Rather than defending this view here, I will simply explore some of
its consequences.32

32The view has been defended by Maria Lasonen-Aarnio, ‘Unreasonable Knowledge’, 2. As she
puts it: ‘Reasonableness is at least largely a matter of managing one’s beliefs through the adoption
of policies that are generally knowledge conducive, thereby manifesting dispositions to know
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Inexact Knowledge without Improbable Knowing 51

Williamson’s models have all the structure we need to formally model this
proposal. Since we are modeling an agent whose beliefs are determined by
appearances, we can treat her cognitive dispositions as pairs of an appearance
and the strongest proposition that she believes when she has that appearance.
A cognitive disposition yields knowledge just in case this proposition is
known. Circumstances are normal just in case appearances and reality diverge
by no more than c.

We can now formalize the view that a belief is justified only if it manifests
a disposition to know in normal circumstances:

Disposition to Know: If |f – e| ≤ c, then R(<e, f >) ⊆ S(<e∗, f >).
What you justifiably believe is known in all normal worlds with the same
appearances.

Williamson’s model <W, R> violates Disposition to Know. It models an
agent who is brazen in her beliefs. She always believes a proposition that she
knows in only one world; in almost all normal cases, this belief fails to amount
to knowledge. Brazenness is not a knowledge-conducive cognitive disposition.
By Disposition to Know, beliefs so formed are therefore not justified.

The natural thing to do is to add Disposition to Know to our constraints
on knowledge. Consider the model <W, R′>, where R′ is the smallest binary
relation on W consistent with Margin for Error, Luminous Appearances,
Appearance Centering, and Disposition to Know. This is perfectly well
defined, since S′ is defined in terms of R′ as above, and so Disposition to Know
represents a coherence constraint on knowledge.33 In <W, R′>, S′(<e, f >) =
R′(<f , f >) = {<e∗, f >: |f – e∗| ≤ 2c}. Indeed, it turns out that <W, R′> =
<W, R∗> for c = b—which, as we saw in Section II, fails to predict improbable
knowing.

This result is not mysterious. The thought behind <W, R′> is that
believing what you have justification to believe normally yields knowledge.
The thought behind <W, R∗> was that taking perceptual appearances at
face value normally yields knowledge. Moreover, the thought behind the
normal/abnormal/extraordinary structures outlined in Section III was that,
normally, the strongest thing that we know is something that it is normal
to know. What these structures have in common is that they are models of
iterated normality. In the case of <W, R′>, knowledge requires belief that
is normally true, justification requires belief that is normally knowledge,
and knowledge itself requires justification. These models are well confirmed:
they can be motivated by seemingly unrelated considerations about per-
ceptual knowledge, noisy instruments, bare estimations, and the nature of
justification. Just as importantly, the models are non-disruptive. They do not

and avoid false belief across a wide range of normal cases.’ See also Hawthorne and Srinivasan,
‘Disagreement without Transparency’.
33i.e., S′(<e, f >)=df {<e∗, f ∗>: for all e∗∗, <e∗∗, f >R′<e∗, f ∗>}.
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52 Jeremy Goodman

predict skepticism, arbitrary iterations of knowledge, or violations of margin
for error principles.

These models also vindicate our initial unease about the sort of improb-
able knowing predicted by Williamson’s models. Such knowledge would
involve brazen beliefs—beliefs that almost always fail to amount to knowl-
edge. Brazen beliefs are not justified because an agent with healthy cognitive
dispositions does not hold them, knowledge being the aim of her beliefs. Since
knowledge requires justified belief, there cannot be such brazen improbable
knowing. We therefore have strong abductive grounds to think that simple
perceptual and instrument-based knowledge does not involve improbable
knowing. Whether or not there are any cases of improbable knowing turns,
in part, on the controversial question of whether knowledge is closed under
competent deduction.34

(A more radical reply would be to reconcile <W, R> with Disposition to
Know by adopting S’ as a doxastic accessibility relation and thereby denying
that knowledge requires justified belief. Maria Lasonen-Aarnio has recently
defended such a view, arguing that once we accept Disposition to Know it
would be unnatural and unprecedented to maintain a justified belief require-
ment on knowledge. But Williamson does not seem open to this sort of move,
having elsewhere written: ‘The idea of knowledge without justification should
strike us as anomalous. . . . Knowing p is the central, unproblematic case of
normative appropriateness in believing p.’35)

VI. Conclusion

None of preceding discussion threatens the main conclusion of Williamson’s
paper: that general structural features of knowledge predict the existence of
Gettier cases of both the ‘original’ and ‘fake barn’ varieties. Both sorts of
cases are predicted by <W, R∗>, for the same reason that they are predicted
by <W, R>. This provides further confirmation of the robustness of the
Gettier result.

Acknowledgements
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34Williamson defends this closure principle in his reply to Hawthorne and Lasonen-Aarnio.
Williamson, ‘Replies to Critics’; Hawthorne and Lasonen-Aarnio, ‘Knowledge and Objective
Chance’.
35Williamson, ‘On Being Justified’, p. 112; see also his discussion of ‘knowledge-maximizing
policies’ in his ‘Response to Cohen, Comesaña, Goodman, Nagel, and Weatherson’.
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