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Abstract
Some propositions are true, and it is true that some propositions are true. Each of
these facts looks like an impeccable ground of the other. But they cannot both ground
each other, since grounding is asymmetric. This paper explores two new diagnoses
of this much discussed puzzle. The tools of higher-order logic are used to show how
both diagnoses can be fleshed out into strong and consistent theories of ground-
ing. These theories of grounding in turn demand new theories of the granularity of
propositions, properties, and relations. Even those who are uninterested in grounding
should take seriously these pictures of reality’s logical structure, which are in many
ways reminiscent of Russell’s and Wittgenstein’s logical atomism.
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1 The Puzzle

Say that p grounds q just in case q is true at least partially in virtue of p. Recent years
have seen an explosion of work on this and closely related notions of grounding,
often understood as a kind of metaphysical explanation.1

Two central tenets of this literature are (i) that nothing grounds itself and (ii) that
true generalizations are grounded in their true instances. Together (i) and (ii) present
a puzzle. Consider the claim that something is true. It is true. And it seems to be a
generalization of which it is itself an instance. So (ii) seems to require it to ground
itself, which (i) prohibits.2

1I am operating here with Fine’s ([15]) notion of (factive mediate) strict partial ground.
2Fine [14] initiated discussion of this and related puzzles; for a survey see [28].
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Following Krämer [25], we can regiment this argument in a formal language with a
binary connective ≺ expressing the operative notion of grounding, variables p, q, . . .

of the same syntactic category as sentences, and corresponding quantifier prefixes
∃p, ∀p, ∃q, ∀q, . . . binding these variables. In this language the idea that existential
generalizations are grounded in their true instances can be regimented schematically
as follows:

∀p(ϕ → (ϕ ≺ ∃pϕ)). (1)

Letting ϕ simply be the formula p, we obtain the following instance:

∀p(p → (p ≺ ∃pp)). (2)

Instantiating the variable p with the sentence ∃pp then yields:

∃pp → (∃pp ≺ ∃pp). (3)

The antecedent is true. By modus ponens, we have:

∃pp ≺ ∃pp. (4)

But now consider the claim that nothing grounds itself (i.e., that grounding is
irreflexive):

∀p¬(p ≺ p). (5)

Instantiating p with ∃pp yields the negation of (4). We have a contradiction.
Fritz [17] suggests an intriguing response to this puzzle. He argues that (1) is not

the best way to formalize the idea that true existential generalizations are grounded
in their true instances. He proposes a different way of regimenting that idea, which is
compatible with the irreflexivity of grounding. This different regimentation requires
theorizing in a higher-order language in which quantification is not formalized using
variable-binding sentential operators like ∃p, ∀q, etc. Let me explain.

Krämer’s argument is formulated in a language where quantifier prefixes like ∃p

do double-duty: they both bind variables and express a kind of generality. In higher-
order logic we can separate these two roles. The idea goes back to Frege, and it
is standard both in natural-language semantics and in many applications of higher-
order languages in contemporary metaphysics. Rather than having infinitely many
quantifier prefixes ∃p, ∃q, . . . , we simply have a single existential quantifier ∃ that
combines with a monadic sentential operator like ¬ (i.e., something that itself com-
bines with a formula to form a formula) to form a formula. For example, ∃¬ is a
sentence,3 which we might pronounce “negation is instantiated”, although this gloss
is not meant to suggest that there is any general recipe for translating sentences of our
higher-order language into English. Variable-binding is done with λ-abstraction. If ϕ

is a formula, (λp.ϕ) is a monadic sentential operator in which all free occurrences of
the variable p in ϕ are bound by the prefix λp. So instead of having sentences like
∃pϕ, we now have sentences like ∃(λp.ϕ).

So far we have only considered variables of the same syntactic category as sen-
tences. But it is standard in higher-order logic to allow bindable variables of other

3We allow context to disambiguate use and mention where no confusion is likely to arise.
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syntactic categories. These categories are called types. We will work in a simply rela-
tionally typed language. e is a type (the type of singular terms); every sequence of
types 〈τ1, . . . , τn〉 is a type; nothing else is a type. An expression of type 〈τ1, . . . , τn〉
can be thought of as an n-place predicate, which combines with n arguments respec-
tively of types τ1, . . . , τn to form a formula. Formulas themselves have type 〈〉: they
don’t need to be combined with any arguments in order to form a formula. Monadic
sentential operators like ¬ and (λp.p) are of type 〈〈〉〉: they combine with a formula
to form a formula. The existential quantifier that combines with such an operator
to form a formula is therefore of type 〈〈〈〉〉〉. More generally, for every type τ , we
have existential and universal quantifiers ∃τ and ∀τ of type 〈〈τ 〉〉. And for any type
〈τ1, . . . , τn〉 (where n > 0), we can form terms of that type by λ-abstraction: if
ϕ is a formula, and x1, . . . , xn are pairwise-distinct variables respectively of types
τ1, . . . , τn, then (λx1 . . . xn.ϕ) is a term of type 〈τ1, . . . , τn〉 in which all free occur-
rences in ϕ of any of x1, . . . , xn are bound. The type of a variable is sometimes
indicated by a superscript on its first occurrence in a formula. For readability, we
will continue to deploy the notation of quantifier prefixes, but only as a convenient
abbreviation – for example, ∀xτϕ is now shorthand for ∀τ (λx.ϕ).

In this language, the dictum that true existential generalizations are grounded in
their true instances can be regimented schematically as follows:

∀F 〈τ 〉∀xτ (Fx → (Fx ≺ ∃τF )). (6)

This schema has one instance for every type τ . The instance involving quantification
into sentence position is:

∀F 〈〈〉〉∀p〈〉(Fp → (Fp ≺ ∃〈〉F)). (7)

Unlike (1), this generalization does seem to be consistent with the irreflexivity of
grounding. To illustrate, note that ∃pp now abbreviates the sentence ∃〈〉(λp.p).
Instantiating F and p in (7) with (λp.p) and ∃(λp.p) and performing modus ponens
then yields not (4) but rather:

(λp.p)∃(λp.p) ≺ ∃(λp.p) (8)

And this is not inconsistent with the irreflexivity of grounding, at least not without
further assumptions.

Now there are two natural such assumptions either of which would render (8)
inconsistent with the irreflexivity of grounding. The first is the orthodox principle of
β-conversion, according to which formulas of the form (λv1 . . . vn.ϕ)a1 . . . an and
ϕ[ai/vi] are everywhere intersubstitutable.4 This principle would allow us to replace
(λp.p)∃(λp.p) with ∃(λp.p) in (8), generating a case of self-grounding.

The second such assumption is:

∀p(p → p ≺ (λp.p)p). (9)

4More carefully, they are intersubstitutable provided no variable free in any ai becomes bound when
substituted for any free occurrence of xi in ϕ. (ϕ[ai/vi ] denotes the result of simultaneously performing
all such substitutions.)
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Instantiating p with ∃(λp.p) and performing modus ponens would yield:

∃(λp.p) ≺ (λp.p)∃(λp.p). (10)

Given (8), this would be a counterexample to the asymmetry of grounding, and
hence assuming the transitivity of grounding (which I will not question here), a
counterexample to the irreflexivity of grounding.

There are two reasons why (9) might be appealing to grounding theorists. One is
that it is a natural regimentation of the intuitive idea that any truth grounds the fact
that it is true (where (λp.p) is taken to regiment the sentential operator “it is true
that . . .”). Another is the principle of β-grounding, endorsed by [15], according to
which truths expressed by predications of λ-terms are grounded in truths expressed
by the corresponding β-reduced formulas (schematically: ϕ[ai/xi] → ϕ[ai/xi] ≺
(λx1 . . . xn.ϕ)a1 . . . an)).

While there is no consensus about which of β-conversion and (9) to accept,
grounding theorists typically accept one or the other.5 This sociological fact notwith-
standing, Fritz argues that there could be a principled basis for rejecting both
β-conversion and (9), as his response to Krämer’s puzzle requires. That basis is a
certain picture of propositional granularity, according to which “the application of
properties specified using λ-terms obliterates [propositions’] structural content, but
does not introduce any structural content itself”.

This is an intriguing proposal. Notice that it involves denying that propositions
are structured in the manner of the sentences that express them. For while a sentence
�(λx1 . . . xn.ϕ)a1 . . . an)� is more syntactically complex than the sentence ϕ[ai/xi]
that it immediately β-reduces to, the proposition it expresses will have no structure at
all, and hence will have no more and perhaps even less structure than the propositions
expressed by the sentence it immediately β-reduces to.6 In light of this fact, it is
unclear whether the proposal can be fleshed out in such a way that propositions are
still fine-grained enough to support a robust theory of grounding. As Fritz writes:

[I]t is not clear whether developing the present picture in natural ways will actu-
ally lead to a consistent theory of propositional granularity and grounding at all.
The suggestions made here are merely supposed to illustrate how the surprising
commitments concerning grounding we have ended up with may in principle
arise as natural consequences of interesting views about the individuation of
propositions.

Here is the plan for the paper. In Section 2 I will show that a version of Fritz’s
suggestion can indeed be developed into a consistent theory. Section 3 refines the
theory to make it more amenable to familiar ways of thinking about the structure of
logical space. In many ways the resulting theory is quite attractive. Section 4 argues
that it offers a more promising response to Krämer’s puzzle than available solutions

5They cannot accept both because the two principles are jointly inconsistent with the irreflexivity of
grounding, since (9) is β-equivalent to the claim that every truth grounds itself.
6Note that the most straightforward formulation of the idea that propositions are structured in the image of
the sentences expressing them is inconsistent on its own, given weak logical assumptions having nothing
to do with grounding; see [22] and Section 6.
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in the literature do, once these competing proposals’ implications for propositional
granularity are made explicit. But there are costs. The irreflexivity of grounding,
together with orthodox principles about the ground-theoretic behavior of quantifiers
and Boolean connectives, forces proponents of the theory either to draw an invidious
distinction between binary and unary logical connectives, or to deny that there are any
such relations as conjunction and disjunction. These limitative results are discussed
in Section 5. Section 6 develops another theory of grounding, based on a different
picture of propositional granularity, which avoids these limitations by responding
to Krämer’s puzzle in the opposite way. It holds that not all generalizations have
‘quantificational structure’, and that only when they do must true generalizations
be grounded in their true instances. Formal models of these theories are given in
appendices.

The theories of reality’s granularity developed here are of interest independently of
the considerations of grounding that occasioned them. Talk of propositions, or facts,
having other propositions(/facts) as conjuncts, disjuncts, or instances is ubiquitous in
philosophy. But as we will see, our naı̈ve way of thinking about this kind of logical
structure is inconsistent. The theories developed here display the tradeoffs inherent in
trying to hold on to as much of that naı̈ve conception as possible. Section 7 amplifies
these morals, and shows how ideas arising separately as components of competing
diagnoses of grounding puzzles can be integrated into an attractive form of logical
atomism.

2 A Theory of Ground and Grain

I’ll begin by describing a picture of propositional granularity that vindicates a version
of Fritz’s proposal. For ease of exposition I will speak as if reality consists of a single
domain of entities which can be classified into different types, such as individuals
(type e), propositions (type 〈〉), monadic properties of propositions (type 〈〈〉〉), binary
relations between individuals (type 〈e, e〉), etc. But this is merely an expository con-
venience. Officially, type distinctions are syntactic distinctions among expressions of
our higher-order language. Generalizations about entities of various types are short-
hand for quantification over elements of the set-theoretic models described in the
appendices. These models are used to establish the consistency and non-triviality of
theories of grounding and granularity formulated in our higher-order language.

Think of propositions as being formed iteratively in an infinite sequence of stages.
We begin at stage 0 with one proposition for each set of possible worlds; call these
propositions truth conditions. At stage n we form all conjunctions and disjunctions
of sets of propositions of level less than n, where the level of a proposition is the first
stage at which it is formed. For example, at stage 1, for every non-empty set of truth
conditions X we form a conjunction of all members of X and a disjunction of all
members of X. No two sets of propositions have the same conjunction or the same
disjunction; no conjunction is identical to any disjunction; and no truth condition is
identical to any conjunction or disjunction. Notice that there is no conjunction or
disjunction of the set of all propositions: in order for there to be a conjunction and a
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disjunction of a set of propositions, there must be a stage by which all of its members
are formed.7

Universal generalizations are identified with conjunctions of their instances and
existential generalizations are identified with disjunctions of their instances. In order
to ensure that these conjunctions and disjunctions exist, it must be that, for every gen-
eralization, there is a stage by which all of its instances are formed. We ensure this
as follows. We identify (monadic) properties and (polyadic) relations with functions
from entities of the relevant types to propositions. In the case of relations, there is
a relation for every such function. In the case of properties things are more compli-
cated: there are not as many properties as functions from entities of the relevant types
to propositions. To specify which properties there are, we begin by classifying types
into ranks: non-monadic types have rank 0, and a type 〈τ 〉 has rank one greater than
the rank of τ . A function from entities of type τ to propositions corresponds to a prop-
erty if and only if it assigns no entity a proposition whose level exceeds the rank of
τ . For example, properties of individuals, of propositions, and of relations are identi-
fied with functions from entities of the relevant types to truth conditions; properties
of such properties are identified with function from such properties to propositions
of level 0 or 1; etc.

This account ensures that, for every property, there is a conjunction and a disjunc-
tion of all of its instances (where a proposition is an instance of a property just in
case it is one of the values of the corresponding function). Moreover, it ensures that
the function which maps every monadic property of type 〈τ 〉 to the conjunction of its
instances will itself correspond to a property of type 〈〈τ 〉〉 (and likewise for disjunc-
tion). So not only is there guaranteed to exist, for every property F 〈τ 〉, a conjunction
of all of its instances, which we might call the universal generalization of F , but there
is also property U 〈〈τ 〉〉 such that, for any property G〈τ 〉, applying U to G yields the
universal generalization of G. We interpret the universal quantifier ∀τ as expressing
this property. For example, ∀〈〈〉〉∀〈〉 – intuitively, the proposition that every property
of propositions applies to all propositions – will be the (false) level-1 proposition
whose conjuncts are all and only the conjunctions of level-0 propositions.

Let us now turn to the interpretation of binary conjunction and disjunction – that
is, the connectives ∧ and ∨. The most straightforward option is to interpret ∧ using
the function that maps every ordered pair of proposition to the conjunction whose
conjuncts are exactly the members of the pair, and likewise for ∨ and disjunction.
Since we place no restrictions on which functions from ordered pairs of propositions
to propositions count as relations, this interpretation is available. But it may not be the
most attractive way of thinking about binary conjunction. This is because it prevents
us from using ∧ to characterize the relation of one proposition being a conjunct of
another in cases where the latter proposition has more than two conjuncts.

To avoid that expressive limitation, we could instead interpret ∧ as the func-
tion that maps every ordered pair of propositions to the conjunction with those two

7This idea was inspired by Zeng [49], in which non-basic propositions are formed iteratively from basic,
modally individuated ones in such a way that non-basic propositions are individuated by their immediate
non-factive full grounds, in the terminology of Fine [15].
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propositions as its conjuncts unless one of the two propositions is a conjunct of the
other, in which case it maps them to the latter proposition. This allows us to define p

being a conjunct of q as p∧q = q, and likewise for disjuncts. (More on the interpre-
tation of = below.) We will then be able to characterize the conjunctive/disjunctive
hierarchy of propositions within our higher-order language. Little of what follows
depends on which interpretation of ∧ and ∨ we adopt; both options are described in
the appendix.

Let us now turn to the interpretation of λ-terms. Consider (λp.p). It cannot express
the function that maps every proposition to itself, since that function does not corre-
spond to a property of propositions: the only functions that correspond to properties
of propositions are functions from propositions to truth conditions. But every propo-
sition straightforwardly determines a truth condition, since a conjunction is true at a
world if and only if all of its conjuncts are, a disjunction is true at a world if and only
if one of its disjuncts is, and every proposition it is built from truth conditions through
the operations of conjunction and disjunction. (λp.p) should therefore express the
function that maps every proposition to its truth conditions.

What about other λ-terms? The simplest option is to follow Fritz’s suggestion that
“the application of properties specified using λ-terms obliterates structural content”,
yielding mere truth conditions. Since every function from entities of the relevant
types to truth conditions corresponds to a property or relation, this interpretation is
available. But it may not be the most attractive way of thinking about λ-terms. To see
why, note that Fritz motivates his suggestion with the idea that “there is a metaphysi-
cal division between logical and non-logical properties, with quantifiers and Boolean
connectives being logical, and the properties expressed by λ-terms [. . . ] failing to
be logical”, where only non-logical properties ever obliterate propositions’ structure
when predicated of those propositions. And the present picture does not support this
idea, since predicating negation of any proposition always yields mere truth condi-
tions (the opposite of the truth conditions of the proposition being negated), despite ¬
being a logical constant rather than a λ-term. Whereas Fritz appeals to “a metaphys-
ical division between logical and non-logical properties [and relations]”, we appeal
to a metaphysical division between (monadic) properties and (polyadic) relations.

Note that while Fritz’s diagnosis may seem more natural, it faces a serious prob-
lem: it cannot handle a variant of Krämer’s puzzle with ¬ in place of (λp.p). This
is because his claim that Boolean connectives contribute to propositional structure
implies that ∃〈〉¬ and ¬¬∃〈〉¬ are distinct propositions, with the latter having dou-
ble negation structure the former lacks. If that is right, then the latter is presumably
grounded in the former. Since the latter is also a true instance of the former, this
is inconsistent with (7) given the asymmetry of grounding. We will return to the
question of whether the differential treatment of monadic properties and polyadic
relations is well motivated.

A more conservative approach to λ-terms allows them to behave as much as possi-
ble like one would expect them to, obliterating structure only when the functions they
would otherwise correspond to are not among the space of properties. This proposal,
unlike Fritz’s, will validate η-conversion (the intersubstitutability of terms of the form
F and (λx1 . . . xn.Fx1 . . . xn)), and β-conversion for polyadic λ-terms. While this
more conservative approach strikes me as more attractive, nothing in what follows
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turns on which interpretation of λ-terms we adopt; both options are described in the
appendix.

Finally, consider grounding. As discussed above, grounding theorists tend to hold
that true generalizations are grounded in their true instances. Having identified gener-
alizations with conjunctions or disjunctions of their instances, this principle follows
from the claim that true conjunctions are grounded in their conjuncts and disjunc-
tions are grounded in their true disjuncts. In addition to that claim, I will also assume
that grounding is transitive, and that it relates as few propositions as possible consis-
tent with these assumptions (although this assimilation of all grounding relationships
to cases of logical grounding is merely for concreteness, and is not essential to the
present reply to Krämer’s puzzle, as is shown in Appendix G). So p grounds q if and
only if there is a chain of (at least two) true propositions starting with p and ending
with q such that, for any two consecutive propositions in the chain, the preceding one
is either a conjunct or a disjunct of the one after it.

But specifying which propositions ground which others is not yet to specify an
interpretation of the grounding connective. To do that, we need to say what function
from pairs of propositions to propositions the grounding relation corresponds to. Here
is a natural proposal. There are exactly as many ways for p to ground q as there are
non-trivial chains of propositions r1, . . . , rn the first of which is p, the last of which
is q, and every one of which is a conjunct or disjunct of the one after it. So it is natural
to identify the proposition that p grounds q with a disjunction, each disjunct of which
is the conjunction of the members of some such chain of propositions linking p and
q. If there there are no such chains, this would be the ‘disjunction’ of the empty
set of propositions, which in the present setting we may identify with the 0-level
proposition with contradictory truth conditions.

(So far we’ve focused on the notion of one truth partially grounding another, rather
than the perhaps more widespread notion of a collection of truths collectively fully
grounding another. There are a few reasons for this. One is that the issues raised
by Krämer’s puzzle are more easily stated in terms of partial grounding. Another is
that, whereas the ways for p to partially ground q correspond to chains of propo-
sitions linking p and q, the ways for a collection of propositions � to fully ground
p correspond to a much more complicated pattern of propositions. The final reason
is that formulating generalizations about full grounding requires expanding our lan-
guage with devices for generalizing about collections of propositions, which though
technically straightforward can be a distracting complication. The details are in
Appendix B, along with a treatment of full ground parallel to the present treatment of
partial ground and discussion of its implications regarding the grounds of grounding
facts.)

The picture just sketched is offered as an informal gloss on the models described
in Appendix A. In order to assess whether it offers a response to Krämer’s puzzle of
the general sort Fritz imagined, we need to investigate the theory of grounding and
granularity determined by that class of models. To do this, a few definitions are in
order. First, for every type τ , we define a predicate =τ as (λxτ yτ .∀F(Fx ↔ Fy)).
Our theory entails that =τ behaves like an identity predicate, in that it is reflexive and
licenses the intersubstitution of its flanking terms. Next, we define the operator � as
(λq.(λp.p)q = (λp.p)(q → q)). Our theory entails that � behaves like a necessity
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operator: it applies to all and only propositions whose truth conditions are trivial, and
obeys the modal logic S5.

The theory validates the transitivity, irreflexivity, and factivity of grounding (if p

grounds q, then both are true). It validates the principle (6) above, that existential
generalizations are grounded in their true instances, and the principle below, that true
universal generalizations are grounded in their instances:

∀F(∀τF → ∀x(Fx ≺ ∀τF )) (11)

Does the theory validate the principle that true conjunctions/disjunctions are
grounded in their true conjuncts/disjuncts? This is a more subtle question, turning
on which of the two aforementioned interpretations of ∧ and ∨ we adopt. The first
interpretation, according to which the conjuncts of p ∧ q are exactly p and q (and
likewise for disjunction), validates the principles:

∀p∀q(p ∧ q → (p ≺ p ∧ q)) (12)

∀p∀q(p → (p ≺ p ∨ q)) (13)

(The same holds for right conjuncts/disjuncts, since conjunction and disjunction are
commutative: p∧q = q∧p and p∨q = q∨p.) The second interpretation, according
to which p ∧ q = q if p is a conjunct of q, and likewise for disjunction, cannot
validate these principles given the irreflexivity of grounding. But it does validate the
principles:

∀p∀q((q ∧ Cpq) → p ≺ q) (14)

∀p∀q((p ∧ Dpq) → p ≺ q) (15)

Here C (being a conjunct of) and D (being a disjunct of) are defined in the way
discussed above (i.e., C := (λpq.(p ∧ q) = q) and D := (λpq.(p ∨ q) = q)).

As noted in the previous section, Fritz’s response requires failures both of β-
conversion and of β-grounding. Indeed, the latter principle fails in the following quite
general way:

∀p∀q¬(p ≺ (λp.p)q) (16)

This is because predicating (λp.p) reduces propositions to their truth conditions,
and truth conditions have no conjunctive or disjunctive structure and hence have
no grounds.8 But although β-conversion fails, it does so only in hyperintensional
contexts, since the models validate the following principle:

∀x1 . . . ∀xn�(ϕ ↔ (λx1 . . . xn.ϕ)x1 . . . xn) (17)

8However, the theory developed here does not vindicate a different suggestion Fritz makes that “Tp

grounds a truth p if p is not itself a truth-ascription” (where T abbreviates (λp.p) and is informally glossed
as “truth”; alternative accounts of “it is true that” are considered in Sections 5.1 and 6). In support of this
suggestion he writes that “if p has structural content, for example in virtue of being a conjunction, then
Tp strips away this structural content. The remaining purely qualitative proposition is naturally taken to
ground any conjunctive proposition with the same logical content.” But I don’t think this is a natural sug-
gestion, since it is natural to think that if p is a true conjunction of two modally independent structureless
propositions q and r , then the only grounds of p will be q and r , and hence cannot include (λp.p)p. Fritz’s
claim to the contrary strikes me as an overhasty generalization from (8).
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Finally, the theory requires no restrictions on classical quantificational logic,
validating the following schematic principle of universal instantiation:

∀xϕ → ϕ[a/x] provided a is free for x in ϕ. (18)

This is worth noting because it contrasts with a very different style of response to
puzzle’s like Krämer’s, according to which the culprit is quantificational logic itself.
For example, following Russell [40], we might deny that we can instantiate a bound
variable p with formulas like ∃pp which themselves involve quantification into sen-
tence position, and hence cannot infer (3) from (2). Consideration of such views is
beyond the scope of this paper.9

Let’s take stock. We have seen that the core of Fritz’s proposed resolution of
Krämer’s puzzle can indeed be fleshed out into a “consistent theory of propositional
granularity and grounding”. And the result has a number of theoretical virtues. The
theory is strong (in settling many question of propositional granularity), simple (in
doing so systematically), and reasonably parsimonious (since, at least if we inter-
pret conjunction and disjunction connectives judiciously, we can articulate the central
aspects of the model construction using corresponding generalizations in our higher-
order language). The theory is also logically conservative: it validates classical logic
and an unrestricted principle of universal instantiation, and β-conversion fails only in
hyperintensional contexts. And it is in many respects ground-theoretically orthodox:
true generalizations are grounded in their true instances, and (appropriately under-
stood) true conjunctions and disjunctions are grounded in their true conjuncts and
disjuncts.

Indeed, there are many respects in which these models improve on anything
currently available in the literature on grounding. While that literature contains
many examples of sophisticated models used to interpret formal language containing
grounding connectives, these investigations tend to be limited in that the languages in
question allow us to embed only a limited range of formulas under grounding connec-
tives. For example, one might be able to talk about the grounds of grounding claims,
or about the grounds of conjunctions and disjunctions, but not both, or the grounds
of necessities but not of negations. In general, models tend to be purpose-built to
characterize the grounds of propositions formed by a particular operation of interest
(such as necessitation, conjunction, grounding, etc.). Whether these various model-
ing strategies can be combined is often unclear, and how they might be extended to
languages with other constants and connectives is a matter of guesswork.

9Note that (18) is a weaker version of universal instantiation than the one defended by [5] against
[3] (although those authors assume β-conversion, in which case the two versions are equivalent). The
difference concerns the fact that we are working in a relationally typed language rather than a func-
tionally typed one. In functionally typed languages (which the aforementioned authors use), (∨ϕ) is
itself a term of the same type as ¬ (and ϕ ∨ ψ abbreviates (∨ϕ)ψ). Having such a term would make
∀p((∨ϕ)p → ((∨ϕ)p ≺ ∃τ (∨ϕ))) a sentence. This sentence would be false, since, for any q, no propo-
sition is grounded in every truth that is the disjunction of some p with q (since it would then ground itself
via its own disjunction with q), and hence a counterexample to the validity of (6) for τ = 〈〉. But (6) is
valid in our relationally typed language, which has no term (∨ϕ); it does have (λp. ∨ϕp), but replacing
(∨ϕ) with (λp. ∨ϕp) turns the above would-be falsehood into a truth.
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The basic limitation of such projects isn’t that the space of propositions is con-
structed with particular logical operations in mind. After all, the present theory
began with the idea that the space of propositions can be understood as built up
from truth conditions by iterating two operations of conjunction and disjunction. The
issue is rather that the models one finds in the literature have nothing correspond-
ing to domains of properties and relations, or any general way of thinking about the
available interpretations for new constants and connectives we might add to our lan-
guage. By contrast, the present construction shows how a theory of grounding and
propositional granularity can be embedded in a general theory of the granularity of
propositions, properties and relations. This makes the present theory robust in a way
that existing theories of grounding in the literature are not: we know how to conser-
vatively extend the theory with new constants and connectives, whereas most extant
theories of grounding require adding new structure to their models whenever a new
connective is added to the language. In fact, while each of the following notions
has been modeled separately in the grounding literature, I know of no prior theories
of grounding that allow one to simultaneously model the grounds of conjunctions,
disjunctions, generalizations, negations, necessitations, and grounding claims.10

But we have not yet answered Fritz’s question. He asked “whether developing the
present picture in natural ways will actually lead to a consistent theory of proposi-
tional granularity and grounding” (emphasis added). And while the present theory
may be strong, simple, and parsimonious, there are a number of respects where it is
nonetheless unnatural. Some of these respects are mere artifacts of the model con-
struction, as we will see in the Section 3. Others arise from the very features of the
theory that allows it to respond to Krämer’s puzzle, as we will see in Section 5.

3 Refinements

This section considers two objections to the theory just developed, one to do with
negated propositions and the other to do with ungrounded propositions. It then
describes a modification of the theory that responds to these worries. The picture that
emerges is a kind of logical atomism.

Grounding facts are often thought to correspond to true answers to “why”-
questions, at least on an appropriately metaphysically loaded understanding of those
questions. But at least in ordinary conversation, “why not”-questions are not much
less common than “why”-questions. So if “why”-questions point to a rich subject
matter of what grounds true propositions, we might expect “why not”-questions to
point to a rich subject matter of what ground the negations of false propositions. But
on the present proposal, there is no such subject matter. For negation is a property of
propositions, and so predicating it yields mere truth conditions with no grounds at all.

10On the latter, Litland [33] writes: “The existing solutions to puzzles [of ground] have all been worked
out for languages without grounding operators in the object language. Once we introduce grounding oper-
ators into the object language, the constructions have to be redone, taking into account one’s favorite
proposal about grounding ground. This is not a trivial exercise, since principles about grounding ground
can generate new puzzles of ground.”
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This prediction may not be as problematic as it at first looks. This is because it
is open to grounding theorists to deny that explaining the falsity of false proposi-
tions amounts to explaining the truth of those propositions’ negations. They might
hold, instead, that it amounts to explaining the truth of those propositions’ involu-
tions. Intuitively, two propositions are involutions of each other just in case they
are constructed in the opposite way from the opposite ingredients. Where p is ulti-
mately built from some truth conditions by forming conjunctions and disjunctions
in some pattern, its involution is the proposition built from the opposite truth con-
ditions by forming disjunctions instead of conjunctions and conjunctions instead of
disjunctions. So the involution of p has the same complexity as p but the same truth
conditions as ¬p. Our proposal, then, is that, where q∗ is the involution of q, we
say that p falsifies q just in case p grounds q∗, and hold that “why-not” questions,
appropriately understood, point to a rich subject-matter of what falsifies false propo-
sitions.11 The proposition p falsifies q implies that p is true and q is false, but it is
not the proposition that p grounds ¬q. Rather, it is the proposition that p grounds
q∗, where q∗ is the involution of q. In this way there is just as much structure to
falsification as there is to grounding, and the distinction between falsifying q and
grounding ¬q is no different than the equally crucial distinction between grounding
q and grounding (λp.p)q.

While it may be somewhat inelegant to have two different connectives, one for
grounding and another for falsification, this is not so great a cost. But there is a
deeper worry about the way that predicating properties of propositions inevitably
dissolves them down to their truth conditions. The worry is simply that, on a picture
of propositions as having a hierarchical conjunctive and disjunctive structure, we
should not think that for every truth condition there is a corresponding ungrounded
proposition.

We can sharpen the worry by showing how it conflicts with the following picture,
reminiscent of Wittgenstein’s logical atomism. According to this picture, ungrounded
truths are special: they are basic, and as such they are modally independent of one
another. The present theory is grossly incompatible with this vision. For example, for
any two modally independent ungrounded propositions, there is a third ungrounded
proposition that is necessarily equivalent to their conjunction. This is because, for
any proposition q, (λp.p)q is both ungrounded and necessarily equivalent to q.

One might think that this prediction, however unwelcome, is an inevitable feature
of the kind of theory we have been developing. For the demand that predications
of (λp.p) always be level-0 propositions was imposed to ensure that there is a dis-
junction of all such predications and a property, namely existential generality, that,
when predicated of (λp.p), yields this disjunction. But it turns out we can ensure this
without supposing (as we did in the previous section) that a function from entities
of type τ to propositions corresponds to a property of such entities only if the func-
tion doesn’t assign any entity a proposition whose level exceeds the rank of τ . It is
enough to suppose that a function from entities of type τ to propositions corresponds
to a property only if the function doesn’t assign any entity a proposition whose level

11Litland [35] sympathetically explores a version of this idea.
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exceeds s(r), where r is the rank of τ and s is some strictly increasing function on
natural numbers. A natural implementation of this more general idea is the following:
a function from entities of type τ to propositions determines a property just in case
no entity is assigned a proposition whose level exceeds by more than 2 the rank of τ .

To see why this is a natural proposal, we need to modify our picture of proposi-
tions. We begin at stage 0 with a collection of logical atoms. The negation of every
logical atom is a logical atom, and propositions are formed iteratively as conjunctions
and disjunctions of logical atoms. Unlike before, we now allow a conjunction of the
empty set of propositions, which we think of as a trivial tautology (having only true
conjuncts), and a disjunction of the empty set of propositions, which we think of as
a trivial contradiction (having no true disjuncts). Possible worlds now correspond to
maximally consistent sets of logical atoms, sets which contain every level-0 propo-
sition or its negation but never both. As before, the truth conditions of a proposition
are the set of worlds in which it is true.

We can no longer demand that predicating (λp.p) always yields a level-0 proposi-
tion. For (λp.p)q must have the same truth conditions as q, and not every proposition
has the same truth conditions as any level-0 proposition (or of any level-1 proposi-
tion). But once we reach level 2 all truth conditions are represented. Moreover, there
are natural ways of taking any proposition whose level is greater than 2 and flattening
it down to a level-2 proposition, since every nesting of conjunctions and disjunctions
can be reduced to a conjunctive/disjunctive normal form (i.e., to either a conjunction
of disjunctions of level-0 propositions, or a disjunction of conjunctions of level-0
propositions).12 Instead of having (λp.p) dissolve propositions down to mere truth
conditions, as we did above taking our cue from Fritz, we can instead have it do
something less drastic, namely flattening propositions of level greater than 2 down
to level-2 normal forms, and leaving all other propositions alone. Similarly, negation
maps every proposition of level greater than 2 to the normal form of its involution.
The details are given in Appendix C.

Note that our modified theory no longer allows us to define a notion of necessity in
terms of having the same truth conditions as a tautology, since we cannot talk about
the truth conditions of a proposition by predicating (λp.p) of it, or indeed by predi-
cating anything else, since truth conditions are not propositions. There may yet be a
more complicated way of defining in purely logical terms what it is for a proposition

12There are different ways in which this might go. For example, flattening propositions might be con-
ceived as crushing them, breaking their large scale structure, and fusing together their ultimate particles,
as in the formation of sedimentary rocks. Or it might be conceived as preserving their shape, but
putting enough pressure on them to change the organization of their elementary constituents, as in the
formation of metamorphic rocks. Cashing out this metaphor, consider this conjunction of disjunctions
of conjunctions of logical atoms:

∧{∨{∧{a, b},∧{c, d}},∨{∧{e, f },∧{g, h}}}. Sedimentary flatten-
ing changes its large scale structure, turning it into a disjunction, and fuses the ultimate conjuncts
together into bigger conjunctions, yielding

∨{∧{a, b, e, f },∧{a, b, g, h},∧{c, d, e, f },∧{c, d, g, h}}.
Metamorphic flattening, by contrast, keeps the overall conjunctive structure, but redistributes
the members of the original proposition’s ultimate conjuncts among the disjuncts, yielding∧{∨{a, c},∨{a, d},∨{b, c},∨{b, d},∨{e, g},∨{e, h},∨{f, g},∨{f, h}}. The notion of flattening
defined in the appendix is metamorphic.
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to have trivial truth conditions.13 Or we might introduce necessity as a primitive log-
ical constant, perhaps interpreted by the function that maps every proposition with
trivial truth conditions to the trivial tautology, and every proposition without trivial
truth conditions to the trivial contradiction. This treatment will again yield a stan-
dard S5 modal logic, with truth necessity claims not being (partially) grounded in
any propositions.

4 Granularity First

Our investigation so far has taken a granularity first approach to the theory of ground-
ing.14 Here is what I mean. We haven’t spent much time questioning what we want
from a theory of grounding, at least vis-à-vis conjunction, disjunction, and gener-
alization. Insofar as possible, we want conjuncts to ground true conjunctions, true
disjuncts to ground disjunctions, and true instances to ground true generalizations,
without threatening the transitivity and asymmetry of grounding. But to what extent
is this possible? This is a very hard question in light of impossibility results like
Krämer’s. To make progress, we need to explore different theories of propositions’
structure and the extent to which they allow us to validate the principles of logical
grounding on our wishlist while respecting the structural constraints on grounding.
This section discusses a new impossibility result that highlights important constraints
on such theorizing.

As Fritz [19] notes, most theorizing about grounding freely deploys notions of
one proposition being a (binary) conjunct of another and of one proposition being an
instance of another, which are taken to obey the principles:

conj (p, q ∧ r) ↔ (p = q ∨ p = r) (19)

inst (p, ∀qϕ) ↔ ∃q(p = ϕ) (20)

Surprisingly, Fritz [18] shows that these two seemingly innocuous principles are in
fact jointly inconsistent.15 This result is notable for two reasons. First, it differs from
other limitative results about propositional granularity like the Russell-Myhill theo-
rem (discussed in Section 6) in that each of the two principles is separately consistent.

13This is possible, for example, if we adopt the interpretation of ∧ and ∨ that allows us to talk about
propositions’ conjunctive and disjunctive structure within our higher-order language.
14Dorr [12] is a manifesto for granularity-first approaches in metaphysics more generally. I am sym-
pathetic, but the present methodological point is much weaker: a granularity-first approach to logical
grounding is urgent in light of the paradoxes of grounding, as Fritz [19] forcefully argues, whatever one
thinks about such approaches in other areas; see also [8]. Krämer [26, 27] is a fellow traveler; his approach
is to first determine how fine-grained propositions are as far as grounding is concerned, although he is
open to propositions being fine-grained in further ways that make no difference to grounding.
15Proof : Let B(X) := ∀p(p ∧ (p ∨ Xp)). For any X, if ∀p(Xp → ¬p), then (19) and (20) imply that,
for all p, Xp if and only if p is a false conjunct of an instance of B(X) that also has a true conjunct. Since
B(X) is false for any X, (19) and (20) imply that B gives an injection from collections of false propositions
to false propositions, in violation of Cantor’s theorem.
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(The consistency of (20) is not straightforward and is established in Appendix E.)
Second, it shows that the view of propositional granularity developed in the previous
two sections can be motivated independently of any considerations about ground-
ing. It can be motivated directly by a desire to have a theory that supports both a
robust theory of conjuncts and of instances. By interpreting “is a (binary) conjunct
of” in our models as being a (model-theoretic) conjunct of a conjunction with no
more than two conjuncts, and interpreting “is an instance of” in our models as being
a (model-theoretic) conjunct or disjunct of, we validate both (19) and

inst (p, ∀〈〉F) ↔ ∃q(p = Fq) (21)

The the fact that we validate (19) and (21), despite the inconsistency of (19) and (20),
is exactly parallel to the fact that we validate (5) and (7) despite the inconsistency of
(5) and (1). In both cases, the tenability of these principles depends on distinguishing
(λp.p)ϕ and ϕ: when these propositions differ, the former has less structure than the
latter despite being expressed by a more complex formula.

These reflections have important ramifications for the main extant approaches to
the logical puzzles of grounding in the literature, first advanced by Fine [14] and later
refined by Litland [31, 34] and others. These accounts build on ideas about ground-
ing as a relation between sentences in Kripke’s ([29]) theory of truth, and transposing
these ideas from sentences to propositions. While these theories are complex and var-
ied, we can get a feel for their relevant features by considering how they respond to
puzzles like the one with which we began. These theories hold that the proposition
that something is true grounds the proposition that the proposition that something is
true is true, and not vice versa. They thus deny that true generalizations are always
grounded in their true instances. This denial is motivated (very roughly) by the idea
that all logically complex truths need grounds, the (true) proposition that the propo-
sition that something is true is true can be grounded only via the proposition that
something is true, and grounding is asymmetric, so it does not also go the other way;
and this is okay, since the proposition that something is true has other true instances
to ground it without generating circles of grounding (e.g., the proposition that the
proposition that grass is green is true).16 While these views are articulated in the con-
text of first-order theories of propositions, the parallel response in the present setting
is clear: ∃〈〉(λp.p) ≺ (λp.p)∃〈〉(λp.p), and not vice versa, despite the latter being
an instance of the former. These views therefore make the opposite prediction to the
theory we have been exploring.

I think Fritz’s impossibility result provides a strong reason to be skeptical about
these Kripke-inspired approaches to the logical puzzles of grounding. Just as one
sentence being a conjunct or an instance of another are notions that are central to
Kripkean grounding relations between sentences, these approaches presuppose that
parallel notions make sense in application to propositions. But if this is understood
in the most straightforward way, as in as (19) and (20), then the resulting the-
ory is inconsistent (given classical logic, universal instantiation, etc.). And if it is

16Correia [6], Lovett [36] and Woods [48] argue that we should instead deny that grounding is asymmetric;
see Litland [31, Section 6.8] for a reply.
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understood in a more ecumenical way, for example as (19) and (21), then this involves
a disconnect between the structure of propositions and the structure of the sentences
expressing them. The predictions of the approach are then unclear, since they can no
longer be read off of parallel theories of grounding understood as a relation between
sentences. To see what they predict, the Kripkean approaches must be paired with
some concrete picture of propositional granularity. Yet the only theory of granularity
we have seen so far in which (19) and (21) hold is one where grounding is most nat-
urally interpreted in a way where true generalizations are always grounded in their
true instances, which is what the Kripkean response denies. I do not claim to have
shown that there is no well-motivated consistent theory of the granularity of proposi-
tions, properties and relations within which a broadly Kripkean response to Krämer’s
puzzle is both formulable and attractive. But I am not aware of any such theory.17

So I am pessimistic about the framework that has led many authors to prioritize
the principle that any truth grounds the fact that it is true over the principle that any
truth grounds any true generalization of which it is an instance. But I do not want to
dismiss the idea that we should uphold the former principle rather than the latter, and
that the theory developed in the previous two sections should therefore be rejected.
The next section explores the costs of denying that every truth grounds the fact that it
is true, and some related tensions in the view developed above. The following section
then develops a different theory of grounding and granularity that responds to these
tradeoffs in the opposite way.

5 Two Objections

In this section I’ll present two related objections to the theory developed in
Sections 2 and 3. The objections turn on the fact that the theory requires fundamen-
tally different treatments of monadic properties and dyadic relations. In brief, no
monadic operator can have the kind of ground theoretic behavior that conjunction
has, and no quantifier applying to relations can have the kind of ground theoretic
behavior that the existential quantifier has. On their face, these look like invidious
distinctions. To the extent that they are, they constitute an objectionable prediction of

17This is not the end of the matter. Kripke-inspired theories may still be well-motivated as solutions to
puzzles about the grounds of claims about sentential truth, and hence give an independent reason to deny
that true generalizations are always grounded in their true instances – i.e., to deny that the fact that “there
are true sentences” is a true sentence grounds the fact that there are true sentences. I am not convinced
that such theories are well motivated though. They seem to tacitly rely on some disquotational grounding
principle. Could it be: “ϕ” is true → ϕ ≺ “ϕ” is true? I don’t think so, since that principle classically
implies the inconsistent T-schema given a classical semantics for negation (i.e., that a sentence s is true if
and only if �¬s� is not true). What about the following more cautious principle linking Kripkean sentential
grounding and metaphysical grounding: if “ϕ” and “ψ” are both true and the former Kripke-grounds the
latter, then ϕ ≺ ψ? This principle is still strong enough to derive the alleged grounding claim about
“there are true sentences”, without implying the T-schema. However, I am not sure how well-motivated
the principle is once we reject the T-schema and other classically inconsistent disquotational principles, as
I believe we should; see [2].
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the theory that is not a mere accident of the particular way we have chosen to develop
it. However, it turns out these predictions can be avoided if we are willing to radically
rethink the nature of conjunction and disjunction, by adopting a syncategorematic
treatment of Boolean connectives.

5.1 Truth

We saw in Section 1 that Fritz’s response to Krämer’s puzzle requires denying that
(λp.p)∃(λp.p) is either the same proposition as or grounded in ∃(λp.p). But the
argument was quite general. There can be no property of propositions T that both
applies to every truth and is such that, for all true p, Tp is either identical to or
grounded in p.

One might argue that it is unprincipled to deny the existence of such a property
if we are willing to accept that true conjunctions are grounded in their conjuncts.
For presumably the ground-theoretic behavior of ∧ isn’t unique to binary conjunc-
tion. Surely we can introduce a similarly behaved notion of ternary conjunction
∧〈〈〉,〈〉,〈〉〉

3 whose ground-theoretic behavior is analogous to that of ∧, and likewise

for a four-place connective ∧〈〈〉,〈〉,〈〉,〈〉〉
4 , and so on. But then shouldn’t we also be

able to introduce an analogous monadic connective ∧〈〈〉〉
1 ? Those who accept Fritz’s

response must deny that this is possible. The objection is simply that such a denial is
implausible.

Here is a possible rejoinder in defense of the theory of grounding we have been
exploring. The above objection holds that we should be able to understand a notion
of monadic conjunction by analogy with an infinite family of binary, tertiary, and
higher-arity conjunction connectives. But how does this work? The proposed notion
∧1 is not meant to be definable as self-conjunction, i.e. as (λp.p∧p). For the demand
that (λp.p ∧ p) have the relevant grounding behavior is no more obvious than that
(λp.p) should. Moreover, unlike notions of n-ary conjunction for n ≥ 2, we can-
not see that it should be a kind of conjunction simply by reflecting on the relevant
one-column truth table, since that truth table doesn’t distinguish the proposed notion
of monadic conjunction from a parallel notion of monadic disjunction. And accord-
ing to the present picture of propositions, this is a substantive distinction, since the
proposition with p as its sole conjunct is not the same as the proposition with p as
its sole disjunct.

Is this rejoinder compelling? The dialectical situation is delicate. There is of course
a coherent position here for the grounding theorist, as the model constructions in the
appendix show. And the idea that the monadic case is special because there is nothing
in the corresponding truth table to tell apart conjunction and disjunction is an inter-
esting strategy for trying to make the position seem more principled. Note, however,
that Fritz’s response to Krämer’s puzzle does not force us to distinguish between the
conjunction with p as its lone conjunct and the disjunction with p as its lone dis-
junct. It would be straightforward to modify the model construction to avoid drawing
such a distinction, holding instead that, in the monadic case, there are simply “junc-
tions” – propositions with a single “junct” that are truth conditionally equivalent to
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it and, if true, are grounded in it. Indeed, those attracted to the idea that the struc-
ture of grounding relations (on a non-factive understanding of grounding) is what
individuates propositions will be suspicious of distinguishing singleton conjunctions
and singleton disjunctions, and so should be wary of relying on such a distinction to
defend their position.18

On the other hand, singling out the monadic for special treatment is nowhere near
as ad hoc as, say, singling out binary connectives, or some less natural collection of
types. While it is not something we would have expected in advance of inquiry, ques-
tions of granularity are an area of metaphysics where surprises are to be expected. So
while the special treatment of monadic properties may not be a selling point of the
present framework, it isn’t clearly a fatal flaw. I don’t think it is obvious that “it is
true that . . . , or some notion of ‘monadic conjunction’, must to have the prohibited
grounding behavior.

5.2 Relations

We just saw that, if existential generalizations are grounded in their true instances,
then there is no monadic counterpart of conjunction – no property of propositions
that, when applied to a true proposition, yields a truth that is grounded in that
proposition. I will now establish a parallel result in the opposite direction: if true con-
junctions/disjunctions are grounded in their true conjuncts/disjuncts, then there is no
counterpart of the existential propositional quantifier applying to relations between
propositions – no property that, when applied to a relation that some proposition bears
to another, yields a truth that is grounded in those propositions’ being so-related.
This presents a significant challenge to the view, since the idea that true predica-
tions ought to ground existential generalizations of what is predicated seems to be no
less compelling when predicating polyadic relations than when predicating monadic
properties.

Consider an example. Intuitively, the fact that Caesar was killed grounds the fact
that someone was killed, and this is predicted by (6). By the same token, it seems that
the fact that Brutus killed Caesar should ground the fact that someone killed someone.
But this is not predicted by (6). That principle predicts that the fact that Brutus killed
someone grounds the fact that someone killed someone – and, more generally, that
(λx.∃yRxy)a grounds ∃x∃yRxy. But it is completely silent about when propositions
are grounded by true predications of polyadic relations.

There are two ways in which we might generalize (6) to cover this case. The most
straightforward would be the principle:

∀R〈τ1,τ2〉∀xτ1∀yτ2(Rxy → (Rxy ≺ ∃x∃yRxy)) (22)

But this is not the most natural strategy in the present setting. Intuitively, the instances
of the existential generalization of a dyadic relation should be all and only the pred-
ications of that relation, just as the instances of the existential generalization of a
monadic property should be all and only the predications of that property. Since

18Zeng [49] defends a view of this sort; see also Litland [35].
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∃x∃yRxy is shorthand for the existential generalization of the property (λx.∃yRxy),
and predications of this property need not be predications of R (or vice versa), we
have good reason to consider alternative ways of theorizing about the existential
generalizations of binary relations.

One alternative is to introduce primitive existential quantifiers ∃τ1,τ2 of type
〈〈τ1, τ2〉〉, which we might think of as ranging over pairs of entities, the first of
type τ1 and the second of type τ2. ∃τ1,τ2R will have the same truth conditions as
∃xτ1∃yτ2Rxy. And just as we can think of ∃eF

〈e〉 as the existential generalization of
the property of individuals F , we can likewise think of ∃e,eR

〈e,e〉 as the existential
generalization of the relation between individuals R. The idea that true predications
of binary relations ground the existential generalizations of those relations can then
be formalized as follows:

∀R〈τ1,τ2〉∀xτ1∀yτ2(Rxy → (Rxy ≺ ∃τ1,τ2R)) (23)

I will now show that (23) is inconsistent with true disjunctions always being
grounded in their true disjuncts. First, consider the instance of (23) concerning
relations between propositions:

∀R〈〈〉,〈〉〉∀p〈〉∀q〈〉(Rpq → (Rpq ≺ ∃〈〈〉,〈〉〉R)) (24)

Now recall that ∨ is a predicate of type 〈〈〉, 〈〉〉 (and that p∨q is shorthand for ∨pq).
So we can instantiate R with ∨, p with ∃〈〈〉,〈〉〉∨, and q with an arbitrary falsehood ϕ,
yielding:

∨(∃〈〈〉,〈〉〉∨)ϕ → ∨(∃〈〈〉,〈〉〉∨)ϕ ≺ ∃〈〈〉,〈〉〉∨ (25)

The antecedent is true, since its first disjunct is the true claim that the disjunction
relation is instantiated (which it is). So by modus ponens we have:

∨(∃〈〈〉,〈〉〉∨)ϕ ≺ ∃〈〈〉,〈〉〉∨ (26)

But the principle that true disjunctions are grounded in their true disjuncts (in either
of the two versions discussed in Section 2) implies the reverse:

∃〈〈〉,〈〉〉∨ ≺ ∨(∃〈〈〉,〈〉〉∨)ϕ (27)

This contradicts the asymmetry of grounding.
This argument doesn’t depend on using ∃〈〉,〈〉∨ rather than ∃p∃q(p∨q) to regiment

the existential generalization of disjunction. It is enough to assume that this claim,
however it is understood, would be a proposition that each true disjunction partially
grounds. The argument then shows that there can be no such proposition. For such a
proposition will be true (by the factivity of grounding), as will the result of disjoining
it with any other proposition. Assuming true binary disjunctions with a false disjunct
are grounded in their true disjunct, this conflicts with the asymmetry of grounding.

5.3 The Syncategorematic Strategy

I want now to consider a somewhat radical but I think intriguing and instructive
possible response to this last argument. That argument relied on disjunction being
a relation between propositions. More precisely, it relied on instantiating the vari-
able R with the connective ∨ to move from the universal generalization (24) to its
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instance (25). The response I want to consider rejects this application of universal
instantiation, on the grounds that disjunction is not a relation.

The idea is that, fundamentally, conjunction and disjunction are not relations
between propositions but operations on collections of propositions.19 On this pic-
ture, a more metaphysically perspicuous notation would represent these operations
not using binary connectives, but instead by special syntactic operations, so that, for
any finite set of formulas �, we can form two new formulas

∧
� and

∨
�. Crucially,

∨ is no longer a term of our language. This means that (25) is now ill-formed, and so
cannot be a counterexample to (24).

Now (λpq.
∨{p, q}) is a term, and the view under consideration will accept the

corresponding instance of (24):

(λpq.
∨

{p, q})(∃〈〉,〈〉(λpq.
∨

{p, q}))ϕ →
(λpq.

∨
{p, q})(∃〈〉,〈〉(λpq.

∨
{p, q}))ϕ ≺ ∃〈〉,〈〉(λpq.

∨
{p, q}) (28)

But just as all versions of Fritz’s response hold that (λp.p)ϕ can ground proposi-
tions that ϕ does not (e.g., when ϕ is ∃〈〉(λp.p)), the present proposal holds that
(λpq.

∨{p, q})ϕψ grounds propositions that
∨{ϕ, ψ} does not (e.g., when ϕ is

∃〈〉,〈〉(λpq.
∨{p, q})). This is because disjunctions never ground their disjuncts, so

the proposal is committed to rejecting the analogue of (25):
∨

{∃〈〉,〈〉(λpq.
∨

{p, q}), ϕ} →
∨

{∃〈〉,〈〉(λpq.
∨

{p, q}), ϕ} ≺ ∃〈〉,〈〉(λpq.
∨

{p, q}) (29)

The response we are considering does not merely block the argument in
Section 5.2. It also allows us to formulate polyadic extensions of the idea that gener-
alizations are grounded in their instances, which can subsume (6) and (11) as well as
(23) as special cases. For every sequence of types τ1, . . . , τn we introduce primitive
universal and existential quantifiers ∀τ1,...,τn and ∃τ1,...,τn of type 〈〈τ1, . . . , τn〉〉. We
can then formulate the following two principles:

∀R〈τ1,...,τn〉∀x1 . . .∀xn(Rx1 . . . xn → (Rx1 . . . xn ≺ ∃τ1,...,τnR)) (30)

∀R〈τ1,...,τn〉(∀τ1,...,τnR → ∀x1 . . .∀xn(Rx1 . . . xn ≺ ∀τ1,...,τnR)) (31)

It is straightforward to modify the models in Appendix C to establish the consistency
of the resulting theory, in a formal language where conjunction and disjunction are
treated not as binary sentential connectives but as operations on sets of sentences. The
resulting theory also avoids differential treatment of monadic properties and polyadic
relations of the sort discussed in Section 5.1 – relations are now treated in the same
way that monadic properties had previously been. The details are in Appendix D.

The resulting theory is not without its costs. For example, there is no way to define
the notion of one proposition being a conjunct or disjunct of another, and hence no

19Stalnaker [42, 43] develops a syncategorematic account of logical connectives for somewhat related
reasons: on his view, no relations between propositions obey the principles governing Boolean connectives,
since connectives are not existence-entailing in modal contexts.
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way to even uniquely characterize (let alone define) the new quantifiers like ∃〈〉,〈〉 in
terms of the standard higher-order quantifiers that apply to monadic properties. This
might be seen as a cost in terms of parsimony.

A different misgiving about the proposal is that it fails to generalize to related
puzzles. Consider the view that “P is a partial ground for knowledge that P”, which
Fine [15, p.53] attributes to Williamson [46]. In symbols:

∀xe∀p(Kxp → p ≺ Kxp) (32)

But now consider the existential generalization of knowledge: ∃e,〈〉K . This is not
merely true but known: ∃xKx(∃e,〈〉K). It follows that (23) is inconsistent with (32)
given the asymmetry of grounding, by an argument parallel to that of the previous
section.20 But the kind of response suggested above about disjunction is much less
plausible in the case of knowledge. The response would be that “knows that” should
be regimented not as a relation of type 〈e, 〈〉〉 but instead as a basic syntactic operation
for forming a formula from a singular term and a formula. This is much less plausible
than a syncategorematic treatment of conjunction and disjunction.

This last argument is robust with respect to different views about how what is
known grounds our knowledge. For example, Goldman [20, p.101] defends the view
that “If S knows that p, then p is a prominent part of the explanation for his believing
that p.” We might naturally formalize this idea as a generalization about the grounds
of our believing the things we know:

∀x∀p(Kxp → p ≺ Bxp) (33)

This principle must be rejected too. I know that someone believes something. So the
existential generalization of belief is known: ∃xKx(∃e,〈〉B). Equations (23) and (33)
are then inconsistent with the asymmetry of grounding.

Or consider a neo-Davidsonian account of the logical form of propositional atti-
tude ascriptions, so that “x knows that p” has the logical form: ∃ee(has(x, e) ∧
that(e, p) ∧ know(e)). A proponent of this view might still think that, if one has a
mental state with content that p which amounts to knowledge, then their having that
mental state is partially grounded in p:

∀x∀p∀e((has(x, e) ∧ that(e, p) ∧ know(e)) → p ≺ has(x, e)) (34)

But now consider the existential generalization of the relation of having a men-
tal state: ∃e,ehas. This fact is known: ∃x∃e(has(x, e) ∧ that(e, ∃e,ehas) ∧ know(e)).
Equations (23) and (34) are then again inconsistent with the asymmetry of grounding.

Grounding theorists are of course free to reject these principles about knowledge.
But it is uncomfortable that they are forced to do so. They could try to assimilate
this rejection to the bullet they must already bite about truth, by holding that, when
p is known, this knowledge is grounded not in p but rather in the truth of p – i.e., in
Tp, where T regiments “it is true that . . . ”. But the mere precedent of cases where
Tp grounds propositions that p does not (e.g., when p = ∃〈〉T ) does not make this

20See Peels [38] for a version of this argument.
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response plausible. To the contrary: the more p becomes alienated from Tp in its
grounding behavior, the less plausible it is that the latter as opposed to the former is
the appropriate ground of our knowledge of the former (cf. [36, note 14]).

In sum: Perhaps the most promising direction for developing Fritz’s solution
to Krämer’s puzzle involves denying that conjunction and disjunction should be
thought of as relations between propositions and denying that states of knowledge are
grounded in what is known. While such views are certainly worth exploring, they are
also is sufficiently revisionary that alternative solutions are clearly worth exploring
too. The next section considers one such alternative.

6 Predicational Structure

All of the theories explored so far have essentially relied on the following conve-
nient assumption about propositional granularity: that universal generalizations have
their instances as conjuncts and existential generalizations have their instances as dis-
juncts. This assumption has let us reduce the theory of grounding generalizations to
the theory of grounding conjunctions and disjunctions. But despite its convenience,
there are well-known reasons to reject it.

One familiar objection appeals to the claim that some individuals only contin-
gently exists (where for present purposes ‘exist’ means (λx.∃y(y = x))). Since it is
necessary that everything exists (�∀x∃y(y = x)), and every conjunct of a necessary
truth is necessarily true, it follows that, if anything exists contingently, then the fact
that it exists is not a conjunct of the fact that everything exists.21 Another familiar
objection goes like this. Suppose that the result of predicating a property of an indi-
vidual is about that individual, that a disjunction is about any individual that any of
its disjuncts is about, and that an existential generalization is about only the individu-
als the property being generalized is about. Provided that not every property is about
every individual, it follows that not every instance of an existential generalization is
a disjunct of it.22

A natural reaction to these considerations is to explore views that align the struc-
ture of universal and existential generalizations more closely with the structure of the
sentences that express them. For example, many philosophers are attracted to the fol-
lowing principle about monadic predications (which, in our higher-order language,
include universal and existential generalizations):

∀F 〈τ 〉∀G〈τ 〉∀xτ∀yτ (Fx = Gy → F = G ∧ x = y) (35)

In words: when you predicate a property of an entity, which property and entity these
were can be recovered from the resulting proposition. If this principle held, it would
support a more naı̈ve notion of one proposition being an instance of another: p is an

21For arguments that nothing contingently exists see Williamson [47] and Goodman [21].
22Correia and Skiles [9, p. 662] defend the claim that instances ground existential generalization by being
disjuncts of them, in response to a similar worry.
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instance of q just in case p predicates a property and q predicates either universal or
existential generality of that property.

Making this informal idea precise raises some subtle issues to do with monadic
properties coming in infinitely many types. But we can sidestep these complexities,
since it turns out that (35) is classically inconsistent given (18) and the following very
weak assumption about applications of λ-terms:

(λx1 . . . xn.ϕ)a1 . . . an ↔ ϕ[ai/xi]. (36)

This result is sometimes known as the Russell-Myhill paradox.23 It shows that propo-
sitions cannot have as much structure as the naı̈ve understanding of one proposition
being an instance of another seems to presuppose.

The most common reactions to this result are to either question the basic logi-
cal principles needed to derive it or to despair about propositions having any kind
of predicational structure of the sort that (35) attempts to encode.24 But I want to
explore a third reaction. It turns out that there are interesting consistent weakenings
of (35), which suggest new pictures of propositional granularity that in turn suggest
new responses to Krämer’s and related grounding paradoxes. I will now outline such
a theory of propositional granularity, focussing on the theory of grounding it supports
and how it compares with theories that identify being an instance with being either a
conjunct or a disjunct.

The simplest version of the Russell-Myhill argument establishes the inconsistency
of the instance of (35) for τ = 〈〉:25

∀F 〈〈〉〉∀G〈〈〉〉∀p〈〉∀q〈〉(Fp = Gq → F = G ∧ p = q) (37)

But (35) is not inconsistent for all types. In fact, it is inconsistent only for types that
involve the type of propositions. If we consider only individuals, properties of and
relations between individuals, properties of and relations between such entities, and
so on, (35) and its polyadic generalization are consistent.

More precisely, let the set of recoverable types be the smallest set of types that con-
tains e and that is closed under the formation of non-empty sequences. The following
principle is then consistent:

∀Fτ∀G∀x1 . . . ∀xn∀y1 . . .∀yn(Fx1 . . . xn = Gy1 . . . yn →
F = G ∧ x1 = y1 ∧ · · · ∧ xn = yn), provided τ is recoverable (38)

This principle says that propositions do have predicational structure so long as the
entities involved are of recoverable types. It supports a naı̈ve understanding (in terms
of predicational structure) of one proposition being an instance of another if we are

23It was in effect proved by Russell [39, appendix B] and rediscovered by Myhill [37].
24Walsh [44] defends (35) by rejecting (18), and Kment [24] by rejecting the law of excluded middle
(motivated by a ground-theoretic iterative conception of propositions).
25Informally: (37) implies that applying properties to a given proposition is a one-to-one operation for
making propositions from properties of propositions. And the existence of such an operation is inconsistent
for Cantorian reasons. Consider the property of being a proposition made in this way from a property that
does not apply to the proposition so made. Does this property apply to the proposition made from it? It
must if it doesn’t, but it cannot if it does. See [22] for a formal derivation.
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willing to say that the instance-of relation is well-defined only for generalizations
about recoverable entities. This is the view I want to explore.

Since ∧ and ∨ are of type 〈〈〉, 〈〉〉, which is not recoverable, we must reject the
naı̈ve understanding (in terms of predicational structure) of one proposition being a
conjunct or a disjunct of another. But this does not mean we must reject the idea
of conjunctive and disjunctive structure. Instead, we can understand such structure
in the same way we did in Section 3: conjunctions and disjunctions are formed in
a sequence of stages from sets of propositions from earlier stages, with the initial
stage now comprised of all propositions with a predicational structure. The resulting
picture is a kind of logical atomism. There are atomic propositions, with the structure
of predications involving recoverable entities, and logically complex propositions
built from atomic propositions via conjunction and disjunction. Quantification over
entities of recoverable types is recorded as predicational structure of the resulting
generalizations. While being an instance of a universal generalization is structurally
different from being a conjunct of a conjunction, the two relations play the same role
in a theory of grounding, and likewise for existential generalizations and disjunctions.

The view responds to Krämer’s puzzle by rejecting (7). Propositions only have
quantificational structure in the case of recoverable types. Since 〈〉 is not recoverable,
∃〈〉(λp.p) lacks such structure. Only where there is such structure will true general-
izations be grounded in their true instances. The view therefore accepts all and only
the instances of (30) and (31) where τ1, . . . , τn are all recoverable types. Models of
this theory are given in Appendix F.

The view also avoids the problem of the grounds of truth ascriptions discussed in
Section 5.1. In the models discussed in the appendix, the function that maps every
proposition to its self-conjunction does correspond to a property of propositions, and
is an available interpretation of a truth operator T .26 So interpreted, the view pri-
oritizes truth-grounding over instance-grounding in the same way that the popular
Kripke-inspired views discussed in Section 4 do, although for very different reasons.
Those theories hold that T ∃pTp fails to ground ∃pTp despite being an instance of it,
for holistic reasons to do with the patterns of would-be grounding among all proposi-
tions. The present view, by contrast, holds that T ∃pTp fails to ground ∃pTp because
it is not in the relevant sense an instance of it, despite the sentence “T ∃pTp” being
an instance of “∃pTp”. There is no need to appeal to holistic considerations to deter-
mine patterns of logical grounding; we instead adopt a naı̈ve theory of grounding
relations as the result of chaining together true conjuncts, disjuncts, and instances.

26 There are different options for how to interpret ¬p, such as (i) the involution of p (in which case
¬¬p = p) or (ii) the involution of Tp (in which case p → (Tp ≺ ¬¬p)). (Wilhelm [45] shows
how similar decision points arise for grounding theorists quite generally.) Both are heterodox: option (i)
because propositions don’t ground their double-negations, and option (ii) because they don’t immediately
ground their double-negations (pace Fine [15] and Correia [7]) since the proposition that they are true is
in between. I think the latter is arguably an attractive prediction, since “it’s true that it’s raining” seems
like a good grounding explanation for “why is it not not raining?”; it also seems odd that ¬¬p should be
only one level above p when T Tp is two levels above it, as it were. That said, a view that validates the
grounding orthodoxy for negation is described at the end of Appendix G, and Litland [35] argues that (i)
might be motivated by a ground-theoretic account of propositional granularity.



Grounding Generalizations

7 Synthesis

Propositions have different structure from the sentences we use to express them.
We conjoin sentences two at a time in a given order, but perhaps propositions can
be conjoined many at a time and in no particular order. We generalize by combin-
ing predicates and quantifiers, but perhaps the propositions we thereby express have
the structure of infinite conjunctions or disjunctions of their instances. While the
nature and extent of these structural discrepancies is contested, the existence of some
such discrepancies should not be. For propositions cannot have as much predica-
tional structure as sentences (since (37) is inconsistent) nor as much conjunctive and
quantificational structure (since (19) and (20) are jointly inconsistent).

Despite these limitative results, the space of consistent theories of propositional
granularity is both vast and poorly understood. In choosing between such theories, we
should not be dispassionate. Applications matter, and grounding is an illustrative case
study. Theories about the grounds of conjunctions, disjunctions, and generalizations
have significant implications about how fine-grained propositions, properties and
relations must be. In this way theories of grounding can help guide our investigation
into reality’s granularity.

But while the pictures of reality’s granularity that I have been exploring here were
developed in the service of theories of grounding, they are independently interesting.
The first illustrates the tradeoffs inherent in having as much conjunctive and instance
structure as possible. The second illustrates the tradeoffs arising from having as much
predicational structure as possible. Both pictures are novel and ascribe to reality a rich
logical structure that departs in basic ways from the logical structure of our language.

There is an important respect in which my discussion of these two pictures has
been misleading. As developed above, the pictures are competitors, since they dis-
agree about the correct diagnosis of Krämer’s puzzle. This was by design, both to
keep separate ideas separate and to emphasize that two different type-theoretic diag-
noses of that puzzle are possible, one that appeals to (λp.p) being monadic and
another that appeals to it being of a non-recoverable type.

But if we step back from grounding puzzles and consider these pictures’ distinc-
tive claims about propositional granularity, they are not obviously in tension. The
most distinctive feature of the view in Section 3 is that all true basic propositions
are modally independent, while the most distinctive feature of the view in Section 6
is that basic propositions have internal predicational structure. I want to close by
explaining how these two features can be combined to yield what is arguably a more
attractive theory of reality’s granularity than any of the views discussed so far. The
formal details are given in Appendix G.

The picture that emerges can be seen as a blend of Russell’s and Wittgen-
stein’s logical atomisms. When it comes to properties of and relations among
individuals, properties of and relations among those, and so on, propositions have
Russellian predicational structure. But when it comes to properties of and rela-
tions had by propositions, properties of and relations among them, and so on, such
predicational structure is inconsistent. Here things get Wittgensteinian. Generaliza-
tions are identified with conjunctions or disjunctions of their instances. All truths
are ultimately grounded in logically independent atomic propositions (predications
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involving only fundamental entities) and the negations of such propositions. All
standard grounding principles about truth, negation, conjunction, and disjunction
can be validated, provided we treat Boolean connectives syncategorematically (as
discussed in Section 5.3). But not all grounding relationships are logical, since propo-
sitions with predicational structure that predicate non-fundamental properties must be
grounded in other ways. Looking beyond grounding, this theory offers a strong and
concrete framework for any systematic investigation that appeals to logical structure
in the world.27

Appendix A: Truth ConditionModels

Here we give a precise characterization of the models described in Section 2. We
there described two possible treatments of the connectives ∧ and ∨ and two possible
treatments of λ-terms; these are distinguished by subscripts below.

Let W be some non-empty set and c = d be arbitrary urelements.

Definition 1 (Conjunction and disjunction)∧
X = {c} ∪ X if X = ∅ and W otherwise.∨
X = {d} ∪ X if X = ∅ and ∅ otherwise.

Definition 2 (Propositions)
P0 = P(W)

Pn+1 = P0 ∪ {∧X : X ⊆ Pn} ∪ {∨ X : X ⊆ Pn}

Definition 3 (Ranks) κ(τ) = 0 if τ is not monadic; κ(〈τ 〉) = 1 + κ(τ).

Definition 4 (Domains)
De is some set
D〈〉 = ⋃

n∈N Pn

D〈τ 〉 = Pκ(τ)
Dτ

D〈τ1,...,τn〉 = D〈〉Dτ1×···×Dτn for n > 1

Definition 5 (Truth conditions) tc : D〈〉 → P(W) such that
tc(p) = p for p ∈ P(W)

tc(p) = ⋂{tc(x) : x ∈ p} if c ∈ p

tc(p) = ⋃{tc(x) : x ∈ p} if d ∈ p

Definition 6 (Interpretation)
�x�g = g(v) for variables v

�Fa1 . . . an�
g = �F �g(�a1�

g, . . . , �an�
g)

�¬�g(p) = W\tc(p)

27This paper has been an exercise in devil’s advocacy. I reject all of the theories developed here, since I
accept β-conversion, which I defend in [23].
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�∧1�
g(p, q) = ∧{p, q}

�∨1�
g(p), = ∨{p, q}

�∧2�
g(p, q) = p if {q, c} ⊆ p; q if {p, c} ⊆ q; and

∧{p, q} otherwise
�∨2�

g(p, q) = p if {q, d} ⊆ p; q if {p, d} ⊆ q; and
∨{p, q} otherwise

�≺�g(p)(q) = ∨{∧{r1, . . . , rn} : p = r1 ∈ · · · ∈ rn = q = p}
�∀τ �

g(f ) = ∧{f (x) : x ∈ Dτ }
�∃τ �

g(f ) = ∨{f (x) : x ∈ Dτ }
�(λ1x1 . . . xn.ϕ)�g(y1, . . . , yn) = tc(�ϕ�g[xi→yi ])
�(λ2x

τ1
1 . . . x

τn
n .ϕ)�g(y1, . . . , yn) =

(i)�ϕ�g[xi→yi ] if ∃f ∈ D〈τ1,...,τn〉∀yi ∈ Dτi
: f (y1, . . . , yn) = �ϕ�g[xi→yi ],

(ii) tc(�ϕ�g[xi→yi ]) otherwise.

Definition 7 (Validity) ϕ is valid := tc(�ϕ�g) = W for all g in any model

Appendix B: Plural Quantification and Full Ground

For every type τ we add a corresponding type τ ∗ for pluralities of entities of type
τ . (Compare the ‘extensional types’ of [13].) Formally, we enrich our type sys-
tem as follows: e is a type; for any type τ , τ ∗ is a type; for any types τ1, . . . , τn,
〈τ1, . . . , τn〉 is a type; nothing else is a type. Domains for non-plural types are defined
as before. Dτ∗ = P(Dτ ). For every type τ , we enrich our language with an ‘is one
of’ connective ∈τ of type 〈τ, τ ∗〉 such that �∈τ �

g(x, Y ) = W if x ∈ Y and = ∅
otherwise.

Now to full grounding. Intuitively, a way for � to fully ground p is given by a
collection of propositions that can be organized in such a way that any such propo-
sition not in � is assigned some such propositions that immediately fully ground it
(by being either all of its conjuncts or some of its disjuncts), every maximal chain
of these immediate full grounding relationships begins in � and ends at p, and every
member of � is used in the process.

Definition 8 X is a way for � to fully ground p if and only if, for some non-trivial
rooted tree G = 〈V, E, v〉 and surjective function f : V → X,

1. f (v) = p

2. {f (x) : x has no children} = �

3. if x is a child of y, then f (x) is either a conjunct or a disjunct or f (y)

4. if f (x) ∈ � and q is a conjunct of f (x), then q = f (y) for some child y of x.

Finally, we enrich our language with a full grounding connective < of type
〈〈〉∗, 〈〉〉, subject to the interpretation:

�<�g(�, p) =
∨{∧

X : X is a way for � to fully groundp
}

.

(Parallel strategies for introducing a full grounding connective in the context of the
other models of grounding discussed below are straightforward.)

This clause validates all principles of the pure logic of (strict) ground in [16] (iso-
lated in [11]), as well as the ‘internality’ of full grounding: (� < p) → �(∀q(q ∈〈〉
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� → q) → (� < p)). Partial grounds are all and only the parts of full grounds:
(p ≺ q) ↔ ∃�(p ∈〈〉 � ∧ � < q). But not every full ground together with a partial
ground is a full ground: p ∨ (q ∧ r) may be fully grounded in p alone and partially
grounded in q without being fully grounded in p together with q.

The clause also validates the following controversial but popular principle about
iterated grounding: (� < p) → (� < (� < p)).28 The main reservation about
that principle in the literature is that � < p and � < q can have different full
grounds when p and q are different propositions. But that is validated too: ((� <

p) ∧ (� < q)) → (p = q → ¬∀
((
 < (� < p)) ↔ (
 < (� < q)))). There
is no incompatibility here because < is a many-one relation: true grounding claims
typically have many full grounds.

Appendix C: Atomist Models

Here we give a precise characterization of the modified model construction described
in Section 3. This involves (i) changing the definition of propositional domains, (ii)
introducing a normalization operation that replaces the truth condition operation in
the clause for λ-abstraction, and (iii) introducing parallel changes in the clause for
negation.

P0 is now a set of basic atomic propositions, imbued with a negation operation
ν : P0 → P0 such that ν(p) = ν(ν(p)) = p for all p ∈ P0. Domains are defined as
in Appendix A, with two changes:

Pn+1 = P0 ∪ {{c} ∪ X : X ⊆ Pn} ∪ {{d} ∪ X : X ⊆ Pn}
D〈τ 〉 = Pκ(τ)+2

Dτ

The first change is to allow for a trivial tautology {c} and contradiction {d}. We make
a parallel adjustment in the interpretation of ≺:

�≺�g(p, q) = {d} ∪ {{c, r1, . . . , rn} : p = r1 ∈ · · · ∈ rn = q = p}
We now define an operation for turning level n + 3 propositions into Boolean-

equivalent level n + 2 propositions. The intuitive idea is that every conjunction is
replaced with its conjunctive normal form and every disjunction with its disjunctive
normal form. For example, suppose we have a level-3 conjunction. We first turn it
into a level-3 conjunction of disjunctions, by replacing every level-0 conjunct with
its singleton disjunction and replacing every conjunctive conjunct with the singleton
disjunctions of its members. Next, we do the same to this conjunctions’ disjuncts,
yielding a level-3 conjunction of disjunctions of conjunctions. Then, we invert each
of its conjuncts from a disjunction of conjunctions to a conjunction of disjunctions,
yielding a level-3 conjunction of conjunctions of disjunctions. We then merge the
conjuncts together, yielding a level-2 conjunction of disjunctions equivalent to our
original proposition; for an example see footnote (12). By iterating this procedure n

28This principle is endorsed by [4, 10, 32]; see [33] for a review of the literature on iterated grounding.
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times any proposition of level n + 2 can be reduced to a level-2 normal form. More
precisely:

Definition 9 (Sign) σ(p) = c if c ∈ p and σ(p) = d if d ∈ p.

Definition 10 (Members) m(p) = p\{σ(p)}

Definition 11 (Involution) Let ∗ be the operation on D〈〉 ∪ {c, d} such that
p∗ = ν(p) for p ∈ P0
c∗ = d

d∗ = c

p∗ = {x∗ : x ∈ p} for p ∈ D〈〉\P0

Definition 12 (Polarization)
p† = {σ(p)} ∪ {q : q ∈ p and σ(q) = σ(p)∗} ∪ {{σ(p)∗, q} : q ∈ p ∩ P0} ∪
{{σ(p)∗, q} : ∃r ∈ p s.t. q ∈ m(r) and σ(r) = σ(p)}

Definition 13 (Inversion) If m(p) = ∅, then ι(p) = {σ(p)∗, p}. Otherwise, ι(p) =
{σ(p)∗} ∪ {{σ(p)} ∪ image(f ) : f a choice function on m(p)}.

Definition 14 (Flattening) f (p) = ⋃{ι(q†) : q ∈ m(p†)}

Definition 15 (Levels) l(p) = min{n : p ∈ Pn}

Definition 16 (Normal form) Let norm : D〈〉 → P2 s.t. norm(p) = f l(p)−2(p) if
l(p) > 2, and norm(p) = p otherwise.

We interpret our language as in Appendix A with three exceptions: (i) we modify
the clause for ≺ as described above, (ii) we replace tc with norm in the clause for
λ-abstraction, and (iii) we modify the clauses for ¬ as follows:

�¬�g(p) = norm(p∗)

Finally, we define a notion of truth conditions as follows:

Definition 17 (Worlds) W = {w ⊆ P0 : ∀p ∈ P0, p ∈ w ↔ ν(p) ∈ w}

Definition 18 (Truth conditions) tc : D〈〉 ∪ {c, d} → P(W) such that
tc(p) = {w : p ∈ w} for p ∈ P0
tc(c) = W

tc(d) = ∅
tc(p) = ⋂{tc(x) : x ∈ p} if c ∈ p

tc(p) = ⋃{tc(x) : x ∈ p} if d ∈ p

As before, a formula is valid if and only if it has trivial truth conditions in every
model relative to every assignment.
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Appendix D: Syncategoremtic Models

This appendix explains how to modify the above construction to model the theory
sketched in Section 5.3, which endorses (30) and (31) (formulated in terms of new
quantifiers which take relations as arguments), and in which conjunction and disjunc-
tion are formalized not as connectives but as syntactic operations for forming new
formulas from finite sets of formulas.

We first modify the definition of higher-order domains to give a uniform treat-
ment of monadic and polyadic types. Ranks and domains are now defined as follows:
κ(e) = κ(〈〉) = 0; κ(〈τ1, . . . , τn〉) = max(κ(τ1), . . . , κ(τn)) + 1; D〈τ1,...,τn〉 =
Pκ(〈τ1,...,τn〉)+1

Dτ1×···×Dτn (for n > 0).
We then interpret set conjunction and disjunction in the obvious way: �

∧
��g =

{c} ∪ {�ϕ�g : ϕ ∈ �}, and likewise for disjunction. Similarly for universal and
existential quantifiers applying to polyadic predicates: �∀τ1,...,τn�

g(f ) = {c} ∪
{f (x1, . . . , xn) : xi ∈ Dτi

}, and likewise for existential quantifiers.
The rest of the construction is as before with the obvious adjustments.29

Appendix E: Schematic Instance Structure

In this appendix we establish the consistency of the schemas:

∀p(inst (p, ∃xϕ) ↔ ∃x(p = ϕ))

∀p(inst (p, ∀xϕ) ↔ ∃x(p = ϕ))

For convenience, we will operate in a higher-order language of the sort discussed
in Section 1, where quantifier prefixes are treated as syncategorematic variable-
binding sentential operators. That is, ∃x is a single expression that combines with
a formula to yield a formula; however, unlike other expressions with this syntactic
behavior (i.e., of type 〈〈〉〉), we do not assign a semantic value to ∃x, but instead assign
semantic values directly to formulas ∃xϕ, as is standard in Tarskian model-theory for
first-order languages.

The model construction has some high-level similarities to the ones discussed in
Appendices A and C. In both cases, since we can recover the instances of a gen-
eralization from that generalization, Cantor’s theorem implies that not all sets of
propositions can be all and only the instances of some generalization. The main dif-
ference from the previous constructions is that generalizations can be instances of
themselves. Another difference is a reversal in what is possible regarding conjunc-
tion and negation: the present construction is compatible with distinct propositions
always having distinct negations (although for simplicity we will start off with
models where this fails), but not with distinct pairs of propositions always having

29Having
∧

and
∨

apply to arbitrary sets of formulas would require two additional modifications: (i)
adding transfinite stages in constructing propositional domains, and (ii) generalizing the flattening and
normalization operations to apply to propositions of transfinite level. (The latter can be done by letting the
flattening of a conjunction/disjunction whose level is a limit ordinal be the conjunction/disjunction of the
normalizations of its conjuncts/disjuncts.)
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distinct conjunctions (given the inconsistency of instance structure and conjunctive
structure).

I’ll begin with an informal discription of the models. There are two distinguished
‘boring’ propositions, one true and one false. Each has itself and only itself as an
instance. Every categorematic predication (i.e., every formula that is neither a free
variable nor a generalization) denotes one of these two propositions. Generalizations
are individuated by their instances. So the boring truth is ∀p(p ∨ ¬p) (equivalently,
∃p(p ∨ ¬p)), since its instances are true categorematic predications (i.e., the boring
truth), and the only proposition with the boring truth as its only instance is the boring
truth. Likewise, the boring falsehood is ∀p(p ∧ ¬p) (equivalently, ∃p(p ∧ ¬p)).

Now consider ∃p¬p and ∀p¬p. These two propositions have the same instances:
namely, both boring propositions. So they cannot be either of the two boring proposi-
tions. Now, if we didn’t have sentences like ∃q∃p¬p and ∃pp, we could get by with
just these four propositions. This is because, for any formula ϕ and assignment g, it
will turn out that �ϕ�g will be one of these four propositions as long as any occur-
rences of vacuous propositional quantifiers or of propositional variables in ϕ are in
the scope of some categorematic operator. But the possibility of vacuous proposi-
tional quantification and of propositional variables occurring only under quantifiers
complicates things.

First, notice that, for any proposition p, ∀xp has p as its only instance. Since,
as we have seen, some propositions have more than one instance, it follows that
there must be infinitely many propositions – and not only infinitely many proposi-
tions with a single instance. For example, ∀p∀x∀q(p → q) has not only the boring
truth and falsehood as instances, but also the proposition whose only instance is
the proposition that has the boring truth and boring falsehood as its only instances.
∀p∀x∀q∀y∀r(p → (q → r)) has more instances still, etc.

Next, consider bound propositional variables occurring only under quantifiers. For
example, both ∃pp and ∀pp have every proposition as an instance. In fact, there is
an infinite sequence of propositions with infinitely many instances: the instances of
∃p∀xp are all propositions that have a single instance; the instances of ∀p∃x∃yp

are all the propositions that have a single instance and whose instance has a single
instance; etc. Fortunately, it can be show by induction on the complexity of formulas
that these are the only propositions with infinitely many instances expressed by any
closed sentence. It is this fact that allows us to build models of instance structure.

We now turn to a formal description of the models. Let D〈〉 = Z\{0}. Let u be a
partial function from P(D〈〉) → D〈〉 satisfying the following conditions:

• u is injective
• u is defined on all finite X ⊆ D〈〉
• u is defined on {f n(p) : p ∈ D〈〉}, for all n ∈ N, where f (p) := u({p})
• −u(X) = u({−p : p ∈ X}) if u is defined on X
• u({1}) = 1
• u(X) > 0 if and only if p > 0 for all p ∈ X

While it is possible (but tedious) to explicitly specify such a function, the existence
of such a function is easily seen by cardinality considerations. Intuitively, u(X) is
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the universal generalization whose instances are all and only the members of X, and
−u({−p : p ∈ X}) is the corresponding existential generalization.

We let De be an arbitrary set and D〈τ1...τn〉 = {1, −1}Dτ1×···×Dτn . We then interpret
our language as follows:

�x�g = g(x)

�Fa1 . . . an�
g = �F �g(�a1�

g, . . . , �an�
g)

�¬�g(p) = 1 iff p < 0
�∧�g(p, q) = 1 iff p > 0 and q > 0
�∀xϕ�g = u{�ϕ�g′ : g′ an x-variant of g}
�∃xϕ�g = −u{−�ϕ�g′ : g′ an x-variant of g}
�inst�g(p, q) = 1 iff ∃X((p ∈ X ∧ q = u(X)) ∨ (−p ∈ X ∧ q = −u(X)))

It can be shown by induction on the complexity of formulas that the clauses for
quantifiers are well-defined given the conditions on u.

I’ll now describe two natural ways in which the construction might be modified
or extended. First, in order to validate double-negation equivalence (and hence the
injectivity of negation), we could replace the above interpretation of negation with
the syncategorematic clause:

�¬ϕ�g = −�ϕ�g

Second, we can prune down the model in a natural way to eliminate arbitrary structure
and superfluous propositions like u(∅). To do this, start with a model of the kind
just described, and let the propositional domain D∗〈〉 of the new model be all and
only the propositions denoted by closed sentences in the old model. D∗〈〉 is clearly
a subset of the image of u. Moreover, it can be shown that, for any p, q ∈ D∗〈〉, if

u−1(p) ∩ D∗〈〉 = u−1(q) ∩ D∗〈〉, then u−1(p) = u−1(q) . So we can generate a new

model by replacing u with the function u∗ : u−1(p) ∩ D∗〈〉 �→ p. Models generated
in this way are unique up to isomorphism.

Appendix F: Predicational Models

The model construction here repurposes many of the ideas from Appendices A and
C. We first characterize the recoverable types, entities of which are constituents of
atomic propositions, as follows:

Definition 19 (Recoverable types) Let R be the smallest set of types containing e

that is closed under the formation of non-empty sequences.

Next, we define our domains. Propositional domains are constructed as in
Appendix C, except with the level-0 propositions P0 now treated as having additional
structure, viz predications involving recoverable entities. Recoverable properties and
relations are identified with functions from entities of the relevant types to truth
conditions. Non-recoverable properties and relations are identified with arbitrary
functions from entities of the relevant types to propositions. The distinction here
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between recoverable and non-recoverable types is similar to that between monadic
and polyadic types in Appendix A.

Definition 20 (Domains) For some non-empty W and urelements c = d:
De = some set
D〈τ1,...,τn〉 = P(W)Dτ1×···×Dτn for 〈τ1, . . . , τn〉 ∈ R

D〈τ1,...,τn〉 = D
Dτ1×···×Dτn

〈〉 for 〈τ1, . . . , τn〉 ∈ R

D〈〉 = ⋃
n∈N Pn

P0 = {〈f, 〈x1, . . . , xn〉〉 : f ∈ D〈τ1,...,τn〉, xi ∈ Dτi
, 〈τ1, . . . , τn〉 ∈ R}

Pn+1 = P0 ∪ {{c} ∪ X : X ⊆ Pn} ∪ {{d} ∪ X : X ⊆ Pn} (same as in Appendix C)

Definition 21 (Truth conditions) tc : 〈f, 〈x1, . . . , xn〉〉 ∈ P0 �→ f (x1, . . . , xn); tc is
defined as in Appendix C for p ∈ D〈〉\P0.

Definition 22 (Property negation) ′ : ⋃
τ∈R\{e} Dτ → ⋃

τ∈R\{e} Dτ such that
f ′(x1, . . . , xn) = W\f (x1, . . . , xn) for all 〈x1, . . . , xn〉 ∈ domain(f ).

Definition 23 (Involution) ∗ : 〈f, 〈x1, . . . , xn〉〉 ∈ P0 �→ 〈f ′, 〈x1, . . . , xn〉〉; ∗ is
defined as in Appendix C on D〈〉\P0.

Since instance structure is no longer a species of conjunctive/disjunctive structure,
we need to add it to the list of kinds of immediate non-factive grounding relations in
terms of which we interpret ≺, which we do as follows.

Definition 24 (Projection functions) πi(〈x1, . . . , xn〉) = xi

Definition 25 (Immediate non-factive grounds) For p, q ∈ D〈〉, p ∝ q := either
p ∈ q, or π1(q) ∈ ⋃

τi∈R{�∀τ1,...,τn�, �∃τ1,...,τn�} (see below) and π2(q) = 〈π1(p)〉.

Definition 26 (Surrogates for truth conditions) s : P(W) → P0 s.t. s(X) =
〈{X}D〈e〉 , 〈{W }De 〉〉 (gloss: self-identity is such that an X-world obtains)

Definition 27 (Interpretation) We interpret ∧ and ∨ as in Appendix A.
�Fτa1 . . . an�

g = 〈�F �g, 〈�a1�
g, . . . , �an�

g〉〉 if τ ∈ R and �F �g(�a1�
g, . . . , �an�

g)

if τ ∈ R

�T �g(p) = {c, p} (alternatively {d, p})
�¬�g(p) = p∗ (alternatively �T �g(p)∗; see note 26)
�≺�g(p, q) = {d} ∪ {{c, r1, . . . , rn} : p = r1 ∝ · · · ∝ rn = q = p}
�∀τ �

g(f ) = ⋂{f (x) : x ∈ Dτ } for τ ∈ R and s(
⋂{tc(f (x)) : x ∈ Dτ }) for τ ∈ R;

similarly for ∀τ1,...,τn when n > 1
�∃τ �

g(f ) = ⋃{f (x) : x ∈ Dτ } for τ ∈ R and s(
⋃{tc(f (x)) : x ∈ Dτ }) for τ ∈ R;

similarly for ∃τ1,...,τn when n > 1
�(λx

τ1
1 . . . x

τn
n .ϕ)�g(y1, . . . , yn) = tc(�ϕ�g[xi→yi ]) for 〈τ1, . . . , τn〉 ∈ R and

�ϕ�g[xi→yi ] for 〈τ1, . . . , τn〉 ∈ R
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Appendix G: Atomismwith Predicational Structure

This appendix shows how the ideas of Appendices C and F can be combined to model
a version of logical atomism where atomic propositions decompose into predications
of fundamental properties and relations.

We model fundamental entities (logical atoms) as members of a set A of vari-
ables of our language such that, if a

〈τ1,...,τn〉
0 ∈ A, then (i) 〈τ1, . . . , τn〉 ∈ R and (ii)

for all τi , there is some a
τi

i ∈ A. Atomic propositions correspond to predications
�a0a1 . . . an� involving these variables (although, for reasons that will emerge, they
are not themselves members of D〈〉). We will now define a set F the members of
which correspond to Boolean combinations of logical atoms:

Definition 28 (Fundamentally based propositions)
F0 = {�a〈τ1,...,τn〉

0 a
τ1
1 . . . a

τn
n � : ai ∈ A}

Fm+1 = F0 ∪ {{n, p} : p ∈ Fm} ∪ {{c} ∪ X : X ⊆ Fm} ∪ {{d} ∪ X : X ⊆ Fm}
F = ⋃

n Fn

Note the new structure building operation: {n, p} is the negation of p.

Definition 29 (Domains) Drawing on Appendices C and F:
De = {ae : a ∈ A}
D〈τ1,...,τn〉 = FDτ1×···×Dτn for τi ∈ R

P0 = {〈f, 〈x1, . . . , xn〉〉 : f ∈ D〈τ1,...,τn〉, xi ∈ Dτi
, f (x1, . . . , xn) ∈ F0}

Pm+1 = {{n, p} : p ∈ Pm} ∪ {{c} ∪ X : X ⊆ Pm} ∪ {{d} ∪ X : X ⊆ Pm} ∪
{〈f, 〈x1, . . . , xn〉〉 : f ∈ D〈τ1,...,τn〉, xi ∈ Dτi

, f (x1, . . . , xn) ∈ Fm+1}
D〈〉 = ⋃

n∈N Pn

D〈τ1,...,τn〉 = D
Dτ1×···×Dτn

〈〉 if any τi ∈ R

D〈τ 〉 = Pκ(τ)+3
Dτ for τ ∈ R

We now define three functions: a maps every member of A to the corresponding
entity in D; ·↑ maps every member of D〈〉 to the member of F that results from
“unpacking” the content of its predicational constituents; ·↓ maps every member of
F to the corresponding member of D〈〉.

Definition 30 (Logical atoms) a : aτ → Dτ s.t.
a(ae) = a

a(a
〈τ1,...,τn〉
0 )(a(a

τ1
1 ), . . . , a(a

τ1
n )) = �a0a1 . . . an�

a(a
〈τ1,...,τn〉
0 )(x1, . . . , xn) = {d} if any xi ∈ image(a)

Remark 31 The third clause in the definition of a says that applying an atomic rela-
tion to a non-atomic entity yields the trivial contradiction. This is somewhat arbitrary,
but there appears to be no more principled option. Note that this possibility does not
arise if A contains no higher-order predicates. This is a count in favor of the view that
all atomic/fundamental properties and relations apply to individuals, held by Lewis
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[30] against Armstrong [1] (who held that laws of nature are a matter of a fundamen-
tal relation of nomic necessitation holding between properties of individuals). Note
also that no denotations of logical connectives will be in the image of a – logicality
is distinguished from fundamentality (as Dorr [12] recommends against Sider [41]).
This is a natural separation once we grant that only entities of recoverable types
are fundamental, and also when conjunctive/disjunctive structure is modeled as an
operation on sets of propositions rather than on pairs of propositions.

Definition 32 (Unpacking) Let ·↑ : D〈〉 → F s.t.
(i) p↑ = π1(p)(π2(p)) if p is an ordered pair, and
(ii) ({∗} ∪ X)↑ = {∗} ∪ {p↑ : p ∈ X} for ∗ ∈ {n, c, d}.

Definition 33 (Correspondence) Let ·↓ : F → D〈〉 s.t.
(i) �a0a1 . . . an�↓ = 〈a(a0), 〈a(a1), . . . , a(an)〉〉 for �a0a1 . . . an� ∈ F0, and
(ii) ({∗} ∪ X)↓ = {∗} ∪ {p↓ : p ∈ X} for ∗ ∈ {n, c, d}.

Note that the image of ·↑ is F and that p↑↓↑ = p↑ for all p ∈ D〈〉.
As in Appendix C, the interpretations of ¬ and of λ-abstraction appeal to an oper-

ation norm mapping every member of D〈〉 to a Boolean-equivalent normal form of
degree ≤ 3 (not 2, since now we have negation structure to account for). There are
many natural such operations, so we omit an explicit characterization. The clauses
for negation and λ-abstraction are then:

�¬�g(p) = norm({n, p↑↓})
�(λx

τ1
1 . . . x

τn
n .ϕ)�g(y1, . . . , yn) = (�ϕ�g[xi �→yi ])↑ for τi ∈ R

�(λx
τ1
1 . . . x

τn
n .ϕ)�g(y1, . . . , yn) = �ϕ�g[xi �→yi ] if some τi ∈ R, n > 1

�(λxτ .ϕ)�g(y) = norm((�ϕ�g[xi �→yi ])↑↓) for τ ∈ R

We now turn to the interpretation of quantifiers. As in Appendices A and C, if f

is a monadic property of a non-recoverable type, then its universal generalization is
the conjunction of its instances. (There is no primitive notion of universal general-
ization applying to non-recoverable polyadic relations.) The situation for recoverable
types is more complicated. The denotation of a recoverable-type universal quantifier
∀τ1,...,τn cannot always map f ∈ D〈τ1,...,τn〉 to the conjunction of the instances of the
resulting generalization, since the image of f may be unbounded in level and so have
no conjunction; nor can it map f to appropriate truth conditions, as in Appendix F,
since worlds are absent from the present model construction. Instead, we interpret the
universal quantifier as the function mapping f to the conjunction of normalizations
of propositions its image (where norm is defined on F as in D〈〉). This is inelegant
but harmless, since application at recoverable types corresponds to ordered-pair for-
mation rather than to function application, so the clauses below won’t threaten the
claim that the only immediate grounds of a generalization are it instances.

�∀τ �
g(f ) = {c} ∪ {f (x) : x ∈ Dτ } for τ ∈ R

�∃τ �
g(f ) = {d} ∪ {f (x) : x ∈ Dτ } for τ ∈ R

�∀τ1,...,τn�
g(f ) = {c} ∪ {norm(f (x1, . . . , xn)) : xi ∈ Dτi

} for τi ∈ R

�∃τ1,...,τn�
g(f ) = {d} ∪ {norm(f (x1, . . . , xn)) : xi ∈ Dτi

} for τi ∈ R



J. Goodman

We now define immediate non-factive grounds. There are three new cases to con-
sider: negated conjunctions and disjunctions, negated negations, and predications of
non-fundamental recoverable properties and relations; unlike all of the previous con-
structions, this third case is an example of grounding not attributable to Boolean or
quantificational structure.

Definition 34 (Immediate non-factive grounds) p ∝ q := p, q ∈ D〈〉 and one of the
following conditions holds:

1. π1(q) ∈ ⋃
τi∈R{�∀τ1,...,τn�, �∃τ1,...,τn�} and π2(q) = 〈π1(p)〉

2. π1(q) ∈ ⋃
τi∈R{�∀τ1,...,τn�, �∃τ1,...,τn�}, π1(q)(π2(q))↓ = p, and p = q

3. n ∈ q and p ∈ q

4. q = {n, r}, n ∈ r, s ∈ r and p = {n, s}, for some r, s

5. q = {n, {n, p}}

We interpret ≺ using ∝ as in Appendix F. To model full grounding, we modify the
definition of ways of fully grounding a proposition as below, and then give the same
interpretation of < as in Appendix B.

Definition 35 X is a way for � to fully ground p if and only if, for some non-trivial
rooted tree G = 〈V, E, v〉 and surjective function f : V → X,

1. f (v) = p

2. {f (x) : x has no children} = �

3. if x is a child of y, then f (x) ∝ f (y)

4. if q ∈ X\� and either (i) c ∈ q, (ii) for some r , q = {n, r} and d ∈ r , or (iii)
π1(q) ∈ ⋃

τi∈R{�∀τ1,...,τn�}, then {r : r ∝ q} ⊆ X.

We interpret predication as in Appendix F: as ordered-pair formation at recover-
able types and as function application at non-recoverable types. While both options
for ∧ and ∨ described in Appendix A remain available, the second seems even more
natural here, given the precedent of ¬ failing to express the model-theoretic negation
operation.

One attraction of this theory is that the notions of being a fundamental entity
(i.e., in the image of a) and of being an atomic proposition (i.e., being a predication
involving only such entities) are definable in the object language:

Atomic := (λp.(λq.q ≺ p) = (λq.q ≺ q))

Fundamentale := (λxe.x = x)

Fundamentalτ := (λxτ .x = x) for τ ∈ R

Fundamental〈τ1,...,τn〉 := (λF .∃x
τ1
1 . . . ∃x

τn
n (Atomic(Fx1 . . . xn))) for τi ∈ R

Note, finally, that the constructions here can be modified in the manner of
Appendix D to validate the kind of view discussed in Section 5.3. On this view, all
generalizations – even of polyadic relations at non-recoverable types – carry a record
of their instances, which will be all and only their immediate grounds. At recov-
erable types, they do so by having predicational structure which records the kind
of generalization they are and what property or relation is being generalized. Such



Grounding Generalizations

structure is inconsistent at non-recoverable types: there, generalizations are identi-
fied with conjunctions/disjunctions of their instances. On this view conjunction and
disjunction are not relations between propositions but operations for forming new
propositions from sets of propositions. It is then natural to regiment negation in
a similarly syncategorematic way. We can then have negated formulas express the
model-theoretic negation of the proposition expressed by their unnegated counter-
parts, without restricting classical quantification theory, as discussed in Section 5.3.
Doing so validates the standard principles about the grounds of negated propositions
from Fine [15].
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