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Abstract. This article explores the connection between two theses: the principle of conditional
excluded middle for the counterfactual conditional, and the claim that it is a contingent matter which
(coarse grained) propositions there are. Both theses enjoy wide support, and have been defended at
length by Robert Stalnaker. We will argue that, given plausible background assumptions, these two
principles are incompatible, provided that conditional excluded middle is understood in a certain
modalized way. We then show that some (although not all) arguments for conditional excluded
middle can in fact be extended to motivate this modalized version of the principle.

Stalnaker (2012) defends propositional contingentism, the thesis that it is a contingent
matter what propositions there are. Stalnaker’s idea is that there are only those propositions
which don’t distinguish between possibilities which can’t be distinguished using materials
which are actually available. For example, it seems that there could have been two duplicate
coins x and y such that neither they nor the materials from which they were made exist in
the actual world. There seems to be no way of distinguishing such merely possible coins
using any combination of qualitative distinctions and reference to actually existing things.
So Stalnaker denies that there actually are any propositions that distinguish between them,
such as the proposition that both are flipped and only x lands heads. A similar picture is
developed in Fine (1977b), see Fritz and Goodman (2016) for an extended investigation of
such views.

Stalnaker (1968, 1981) has also been a prominent defender of the principle of condi-
tional excluded middle for natural language conditionals, according to which negating a
nonvacuous conditional is equivalent to negating its consequent. In particular, he defends
the validity of the schema: either (had it been the case that ϕ, it would have been the case
that ψ) or (had it been the case that ϕ, it would have been the case that not -ψ). Although
conditional excluded middle is highly contested, having been most famously rejected by
Lewis (1973), it nevertheless enjoys wide support.

But propositional contingentism and conditional excluded middle are in tension. Recall
the purportedly actually indistinguishable possible coins x and y. According to conditional
excluded middle, either, had they been flipped and only one of them come up heads,
x would have come up heads, or, had they been flipped and only one of them come
up heads, y would have come up heads. But then x and y would seem to be actually
distinguishable after all, in terms of which of them would have landed heads had exactly
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2 PETER FRITZ AND JEREMY GOODMAN

one of them done so. This argument threatens to generalize: might it turn out that, given
conditional excluded middle, necessarily, all possible modal distinctions can be drawn in
terms of counterfactuals, in which case Stalnaker’s motivation for propositional contingen-
tism would be undermined?

This article explores the extent to which propositional contingentism really is incompat-
ible with conditional excluded middle. §1 introduces Stalnaker’s possible-world models
for contingency in what propositions there are. §2 extends this model theory to coun-
terfactuals in a very general way, making minimal assumptions about both contingency
in what propositions there are and about the semantics of counterfactuals. §3 uses these
models to substantiate the informal tension between propositional contingentism and con-
ditional excluded middle, by showing that the latter rules out certain intuitive patterns of
contingency in what propositions there are. §4 and §5 prove that, given plausible auxiliary
axioms, the models developed in §2 validate conditional excluded middle only if they
invalidate propositional contingentism. As we show in an appendix, it is essential for
these proofs that conditional excluded middle holds not just for any propositions p and
q that there are, but also for any such propositions there could be. §6 therefore considers
whether one might endorse conditional excluded middle only for propositions there are,
and raises doubts about the tenability of such a split decision, as some of the most important
arguments for conditional excluded middle can be used to motivate the modalized version
of the principle. §7 concludes, noting that propositional contingentism cannot be reconciled
with conditional excluded middle by appealing to indeterminacy in which counterfactuals
are true. An appendix answers some technical questions concerning the strength of the
assumptions required to destabilize the combination of conditional excluded middle and
propositional contingentism.

§1. Propositional contingentism. Stalnaker (2012, Appendix A) sketches a way of
formally modeling contingency in what propositions there are. As is familiar from possible-
worlds model theory, these models are based on a set W representing possible worlds,
and propositions are represented by subsets of W . There is no accessibility relation, so a
proposition is understood to be necessary just in case it is identical to W . Contingency in
what propositions there are is modeled by mapping each worldw to an equivalence relation
≈w; the idea is that the propositions at w are the subsets of W which contain either both or
neither of any two worlds related by ≈w. Equivalently, the propositions at w can be taken
to be the unions of sets of equivalence classes under ≈w. Formally, the model theory can
be defined as follows:

DEFINITION 1.1. An equivalence system on a set W is a function ≈ mapping everyw ∈ W
to an equivalence relation ≈w on W . The domain function of ≈, written D≈, is the function
mapping each w ∈ W to

D≈
w = {P ⊆ W : for all v, u ∈ W , if v ≈w u then v ∈ P iff u ∈ P}.

Equivalence systems are naturally used to interpret a propositional modal language with
propositional quantifiers. Consider such a language, using p, q, r, . . . as propositional vari-
ables, ¬ for negation, ∧ for conjunction, � for necessity and ∀ for the universal quantifier
binding propositional variables. Writing �ϕ�M,a for the proposition expressed by a formula
ϕ interpreted using an equivalence system M = ≈ on W and an assignment function a
mapping each propositional variable p to a(p) ⊆ W , we define this interpretation function
as follows:

�p�M,a = a(p),
�¬ϕ�M,a = W\�ϕ�M,a,
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 3

�ϕ ∧ ψ�M,a = �ϕ�M,a ∩ �ψ�M,a,
��ϕ�M,a = {w ∈ W : v ∈ �ϕ�M,a for all v ∈ W },
�∀pϕ�M,a = {w ∈ W : w ∈ �ϕ�M,a[P/p] for all P ∈ D≈

w }.
Here, a[P/p] is the assignment function which maps p to P and any propositional variable
q 	= p to a(q).

Note that w ∈ �ϕ�M,a can be understood as ϕ being true in w according to M on the
assignment function a. As usual, other Boolean operators as well as � and ∃ will be treated
as syntactic abbreviations. We call a formula a sentence if it has no free variables. Since the
evaluation of a sentence ϕ does not depend on the assignment function, we omit it, writing
simply �ϕ�M .

It is natural to assume that necessarily, for any proposition, there is its negation. More
generally: necessarily, there is every Boolean combination of propositions there are.
In equivalence systems, this is guaranteed by the fact that the domain of propositions
of every world is a (complete and atomic) Boolean algebra. It is natural to extend this
constraint beyond Boolean combinations to combinations obtained using the necessity
operator and the universal quantifier. That is, it is natural to require the domain of a
given world w to contain �ϕ�M,a for any formula ϕ of the language specified above and
assignment function a which maps every free variable of ϕ to a proposition in the domain
of w. This constraint can equivalently be formulated by requiring each instance of the
following comprehension schema to be true in every world:

(CompC ) ∀ p̄∃q�(q ↔ ϕ( p̄)).

Here, ∀ p̄ indicates a finite sequence of the form ∀p1 . . .∀pn , and ϕ( p̄) indicates that ϕ is
a formula of the above-specified language in which the only free variables are p1, . . . , pn .
Note that ‘p1’, . . . , ‘pn’ and ‘q’ are object language variables themselves, rather than
metavariables ranging over object language variables. (As usual, quotation marks around
object language expressions are normally omitted.) It is therefore guaranteed that ‘q’ is
distinct from ‘p1’, . . . , ‘pn’, and so the paradoxical ∀q∃q�(q ↔ ¬q) is not an instance of
CompC . For further discussion and motivation of CompC , see Williamson (2013, sec. 6.4).

It turns out that CompC is not valid on the class of all equivalence systems. However,
it is valid on the subclass of equivalence systems that are coherent in the sense described
in §8.1. This coherence constraint is developed in Fritz (2016) on the basis of work in
Stalnaker (2012, Appendix A); as shown in Fritz (forthcoming), the resulting class of
structures is equivalent to the propositional fragment of the more general model theory
of Fine (1977b), as well as several variants discussed in Fritz and Goodman (2016).

§2. Semantics for counterfactuals. Many wellknown ways of constructing a possible-
worlds semantics for counterfactuals are easily adapted to the setting of equivalence
systems. For example, one formulation of Lewis’s (1973) theory associates each world
with an order of comparative similarity among worlds. Adapting this framework to equiv-
alence systems, we can associate each world w with an order of comparative similarity
among atomic propositions in w (equivalence classes of the equivalence relation ≈w).
A different approach is the selection function semantics of Stalnaker (1968); instead of
associating worlds with selection functions mapping propositions to worlds, we can take
them to map propositions to atomic propositions (≈w-equivalence-classes of worlds).1

1 A note on terminology: our use of ‘world’ and ‘atomic proposition’ correspond, respectively, to
the use of ‘point of logical space’ and ‘world’ in Stalnaker (2012).
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4 PETER FRITZ AND JEREMY GOODMAN

Adapting Lewis’s or Stalnaker’s truth-conditions, the above evaluation clauses can then be
extended to a language containing an additional binary operator� for the counterfactual
conditional. In order to obtain the validity of CompC for formulas containing �, the
coherence condition alluded to in the previous section must be extended to cover the
additional semantic structure used to interpret this operator; see §8.1. Indeed, so long as we
restrict our attention to structures that are coherent in the relevant sense, it makes no differ-
ence whether we interpret counterfactuals using a comparative similarity order/selection
function defined on worlds or defined on the atomic propositions of a given world.

Rather than exploring the fine details of such approaches, we will instead present an
extremely general strategy for interpreting counterfactuals on equivalence systems, demon-
strating that our subsequent results do not depend on any such details. In the present setting,
the semantic contribution of a dyadic sentential operator like� corresponds to a function
from pairs of propositions to propositions (in this case, to the proposition that the second
of the pair of propositions would have been the case had the first been the case). Model
theoretically, then, all we will require of� is that its semantic contribution is determined
compositionally by some such function from pairs of sets of worlds to sets of worlds.
We do not impose any further coherence requirements, other than demanding that every
world be able to distinguish itself from all others. This yields the following definition of
a model:

DEFINITION 2.1. A model is a tuple 〈W,≈,C〉, where W is a set, ≈ is an equivalence
system on W such that {w} ∈ D≈

w for allw ∈ W , and C is a function C : P(W )×P(W ) →
P(W ).

The evaluation clauses for connectives other than � are unchanged from the previous
section, to which we add the clause:

�ϕ� ψ�M,a = C(�ϕ�M,a, �ψ�M,a).

For any class of models X , we define a consequence relation and a property of validity
among sentences as usual: � �X ϕ iff

⋂
γ∈��γ �M ⊆ �ϕ�M for all M in X (taking the

intersection to be W for empty �); �X ϕ iff ∅ �X ϕ. If X is the class of all models, we
drop the index.

Note that allowing models to use an arbitrary two-place function on sets of worlds to
interpret the counterfactual conditional does not mean that in a fuller higher-order logic,
quantifiers binding variables in the position of binary sentential connectives should be
modeled as ranging over all such functions at every world. This idea would be disastrous
for propositional contingentism, as such models only validate the instances of CompC in
such a higher-order language if the propositional domain of each world contains every set
of worlds. Rather, the interpretation of the counterfactual conditional is left completely
unconstrained in order to show that our results require no further model-theoretic as-
sumptions. For explorations of models of higher-order logic with variable domains for
all syntactic types, see Fritz and Goodman (2016).

The aim of this article is to demonstrate the tension between propositional contingen-
tism and conditional excluded middle. We illustrating this tension in the next section, and
give a general argument in the following two sections, showing that the falsity of propo-
sitional contingentism follows from CompC , a version of conditional excluded middle,
and some auxiliary premises. In order to forestall any misunderstandings, let us clarify a
couple of aspects of the language and the models introduced here, and the role they play
in the argument. First, we will take as premises any instances of the schematic princi-
ple CompC in the language under consideration here—i.e., the propositionally quantified
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 5

modal language introduced in the previous section, expanded by the addition of the binary
sentential operator�. We make no claim about the truth of instances of CompC in more
expressive languages. Second, we will use the model theory in an instrumental capacity
to argue that propositional contingentism is false if the aforementioned premises are true.
The language under consideration contains no nonlogical constants; furthermore, all of
the principles we will consider as premises and conclusions are sentences, rather than
open formulas. Each such sentence is therefore true or false simpliciter on the intended
interpretation of the logical constants. Thus, all we need to assume about the model-
theoretic consequence relation is that it is truth-preserving, on the intended interpretation
of the language. Although we don’t take this to be trivial, it seems at least prima facie
plausible.

§3. An illustration. For reasons that will become clear, in the present context we
need to be particularly careful about what we mean by ‘conditional excluded middle’. In
the debate between Lewis and Stalnaker, it is formulated as the schema (ϕ � ψ) ∨
(ϕ� ¬ψ). However, in the present setting in which our language contains propositional
quantifiers, it is natural, at least initially, to formulate the principle using the following
sentence of our formal language:

(CEMεε) ∀p∀q((p� q) ∨ (p� ¬q)).

(A general naming convention which explains the label ‘εε’ will be introduced shortly.)
Before illustrating the tension between CEMεε and propositional contingentism, we

need to discuss three relatively uncontroversial principles concerning counterfactuals. The
first is a principle of agglomeration which says that if two propositions q1 and q2 would
each be the case had p been the case, then so too would be their conjunction q1 ∧q2. Using
propositional quantifiers, we can formulate this principle thus:

(Aggεε) ∀p∀q1∀q2(((p� q1) ∧ (p� q2)) → (p� (q1 ∧ q2))).

The second and third principles are that possibility is closed under counterfactual implica-
tion, and that every proposition counterfactually implies itself; formally:

(B1) ∀p∀q((�p ∧ (p� q)) → �q),
(B2) ∀p(p� p).

We will now illustrate the tension between CEMεε and propositional contingentism by
showing that a simple equivalence system fitting Stalnaker’s motivation of propositional
contingentism cannot be extended to a model in which CEMεε is true in every world.
The equivalence system is based on four worlds, representing the following toy model of
modal space. Assume that the universe of worlds is constructed by freely recombining two
electrons a and b, taking only into account what individuals there are. That is, there are four
worlds, one for every subset X of {a, b}. This naturally induces an equivalence system if
one postulates that from the perspective of any world w, worlds are related by ≈w just in
case they can’t be distinguished in terms of the elementary particles that there are at w.
(A generalization of this idea is central to Fine (1977b) and Fritz and Goodman (2016).)
Call the four worlds ab, a, b and e, where e is the empty world, a is the world containing
only a, etc. So all pairs of distinct worlds are discernible from the perspective of every
world, with the crucial exception that a and b are indiscernible from the perspective of e.

More formally, let W = {ab, a, b, e} (where these are four distinct things), and let ≈ be
the equivalence system on W mapping ab, a, b to the identity relation on W and mapping e
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6 PETER FRITZ AND JEREMY GOODMAN

to the equivalence relation on W that relates a and b to each other while relating e and
ab only to themselves. (This system is coherent, in the sense of Definition 8.1 in §8.1.)
We show that there is no model M = 〈W,≈,C〉 such that CompC , CEMεε, Aggεε, B1,
and B2 are true in all worlds.

Assume for contradiction that M is such a model. At ab, there are (in the sense of being
in D≈

ab) both {a} and {b}, so by CEMεε, at ab, either, had {a, b} been the case, {a} would
have been the case, or, had {a, b} been the case, {ab, b, e} would have been the case—in
which case {b} would have been the case, by Aggεε, since, by B2, {a, b} would have been
the case had {a, b} been the case. By Aggεε and B1, one disjunct is false: since {a, b} is
not impossible, it cannot counterfactually imply both {a} and {b}, since their conjunction
is impossible. But this means that, at e, exactly one of {a} and {b} is a proposition that, had
{ab} been the case, would have been the case had {a, b} been the case. Now consider the
following instance of CompC : ∀p1∀p2∃q�(q ↔ ∀r(r ↔ (p1 � (p2 � r)))). Since
at e there are both {ab} and {a, b}, this sentence is true at e only if, for some proposition
X that there is at e, �(q ↔ ∀r(r ↔ (p1 � (p2 � r)))) is true at e relative to an
assignment of {ab} to p1, {a, b} to p2, and X to q. By our previous observations, this
formula must be satisfied at e either only by {a} or by {b}, since it is satisfied only by the
proposition that things are all and only the ways that, at ab, they would have been had it
been the case that {a, b}. Since at e there are neither of these two propositions, this instance
of CompC cannot be true at e, completing our reductio.

§4. The finite case. In one respect, CEMεε expresses a restricted version of condi-
tional excluded middle—it applies only to the propositions that there actually are. To obtain
a general argument that conditional excluded middle is incompatible with propositional
contingentism, a stronger version of the principle is needed which also applies to all
propositions that there could have been. Whether such a principle is motivated will be
discussed in §6. To formulate it, we need a way of simulating quantification over all
possible propositions. We can do so by adapting a strategy going back to Fine (1977a).
Fine’s idea is that we can express universal quantification over possible propositions using
the phrase ‘necessarily, all propositions are such that. . . ’. For this strategy to work within
modal contexts, we must find a way of undoing the effect of ‘necessarily’ for the evaluation
of the complement clause. This can be achieved as follows.

First, we need ways of talking about ‘world propositions’. Recall that in our models the
propositional domain of any world includes the singleton of that world. So relative to this
class of models, ϕ being a world proposition is definable as it being possible that ϕ is true
and it necessitates every proposition or its negation:

WP(ϕ) := �(ϕ ∧ ∀s(�(ϕ → s) ∨ �(ϕ → ¬s))) (s not free in ϕ).

It will be useful to have the following abbreviations for binding a free variable p in a
formula with the definite description ‘the true world proposition’ having a particular scope,
and for something’s being ‘true at’ a given world proposition:

↓pϕ := ∀p((p ∧ WP(p)) → ϕ),

@pϕ := �(p → ϕ).

We can now simulate universal quantification over all propositions there could have been
as follows:

�pϕ := ↓q�∀p@qϕ (q not free in ϕ).
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 7

Using these ‘modalized’ quantifiers, we can formulate a strengthened version of CEM by
replacing ∀ with �. In fact, we only require a version in which the second quantifier is
modalized:

(CEMεπ) ∀p�q((p� q) ∨ (p� ¬q)).

As with CEM, we need to strengthen agglomeration so that it applies to the consequents
of counterfactuals even when they are merely possible propositions:

(Aggεπ) ∀p�q1�q2(((p� q1) ∧ (p� q2)) → (p� (q1 ∧ q2))).

In general, our naming scheme for CEM and Agg will add two tags corresponding to the
quantifiers binding p and q (or q1 and q2, in the case of Agg), with ε indicating ∀ and π
indicating �.

With these modalized principles, we can give a more general argument against the
compatibility of conditional excluded middle with propositional contingentism. This ar-
gument is not yet fully general; with Aggεπ , we can only show that CEMεπ rules out
propositional contingentism in finite models. The argument can be extended to apply to
all models if Aggεπ is replaced by an infinitary analog, but since this complicates the
argument somewhat, we first give a simpler version of the argument for finite models based
on Aggεπ , postponing the infinite case until the next section.

Let U be the claim that there are all possible propositions:

(U ) �p∃q�(p ↔ q).

Two comments are in order. The first is that, strictly speaking, U says only that every
possible proposition is necessarily equivalent to some proposition that there (actually) is.
If (pace Stalnaker) necessary equivalence fails to suffice for propositional identity, then
our initial gloss on U was an overstatement. But it is nevertheless a strong enough con-
clusion for present purposes, since it suffices to refute Stalnaker’s contention that there
are distinctions in modal space that, actually, are not drawn by any proposition. See Fritz
and Goodman (forthcoming) for further discussion of these issues. Second, we should
note that U is compatible with propositional contingentism, since it is compatible with
the possibility that there be strictly fewer propositions than there actually are. But it is
hard to see a principled view on which U is only contingently true. In any case, the
necessitations of the premises of the following arguments are no less compelling than the
premises themselves, and so all of those arguments can be straightforwardly adapted to
apply to the necessitation of U if desired.

Let fin be the class of models M = 〈W,≈,C〉 such that W is finite. The result to be
proven can now be stated as follows:

PROPOSITION 4.1. {CEMεπ,Aggεπ,CompC , B1, B2} �fin U.

Proof. Let M = 〈W,≈,C〉 be a model in fin and w ∈ W such that CEMεπ , Aggεπ ,
CompC , B1, and B2 are true in w. We prove that U is true in w, by showing that D≈

w
contains every world proposition. Consider any v ∈ W , and let A = [v]≈w (the equivalence
class under ≈w containing v). Since all world propositions are in the domains of the
corresponding worlds, CEMεπ entails, for all u ∈ A, that either w ∈ C(A, {u}) or
w ∈ C(A,W\{u}). By B2, w ∈ C(A, A), so for any u ∈ A such that w ∈ C(A,W\{u}),
by Aggεπ , w ∈ C(A, A\{u}).

First, we show that there must be at least one u ∈ A such that w ∈ C(A, {u}): otherwise,
for all u ∈ A, w ∈ C(A, A\{u}), and so by |A| (guaranteed to be finite) applications
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8 PETER FRITZ AND JEREMY GOODMAN

of Aggεπ , w ∈ C(A, ∅), contradicting B1. Second, we show that there can be at most
one u ∈ A such that w ∈ C(A, {u}): otherwise, by Aggεπ , w ∈ C(A, ∅), again contra-
dicting B1.

Thus there is a unique u ∈ A such thatw ∈ C(A, {u}). So, for any assignment function a
such that a(q) = {w} and a(r) = A, �↓p@q(r � p)�M,a = {u}. By CompC , {u} ∈ D≈

w .
Since u ∈ A = [v]≈w , {v} ∈ D≈

w , as claimed. �

§5. The infinite case. There is no obvious way of extending the above proof to infinite
models: the argument that there is at least one u ∈ A such that w ∈ C(A, {u}) requires us
to go through a chain of reasoning containing an application of Aggεπ for each such u.
Indeed, an infinite countermodel to the entailment in Proposition 4.1 will be given in §8.3.
If A is infinite, we need a version of agglomeration which allows us to show even for infi-
nite A that if w ∈ C(A, A\{u}) for each u ∈ A, then w ∈ C(A,

⋂
u∈A A\{u}). Intuitively,

we want a principle that allows us to say, of any plurality of (perhaps merely possible)
propositions, if each of them would have been the case had ϕ been the case, then, had ϕ
been the case, all of them would have been the case. Although Lewis (1973, pp. 19–21)
famously rejected this kind of infinite agglomeration (corresponding in his semantics to the
failure of the ‘limit assumption’), this is widely seen as an implausible consequence of his
system (see Herzberger (1979)). In any case, his motivations were the same as those that
led him to reject conditional excluded middle, and so can be set aside for present purposes.
We know of no philosopher who accepts conditional excluded middle while rejecting the
idea of infinite agglomeration (although the formal tenability of such views is explored in
Bacon (unpublished); see also Swanson (2008)).

One might try to give voice to the idea of infinite agglomeration by moving to an
infinitary language in which we can form conjunctions of infinite sets of formulas and
have universal quantifiers binding infinitely many variables simultaneously. Indeed, in such
a language we could lay down the following schema:

∀p∀i<κqi
((∧

i<κ(p� qi )
) → (

p�
∧

i<κ qi
))
,

which would have the model-theoretic effect of imposing agglomeration regarding infinite
sets of propositions that there actually are. But it would not achieve the effect of infinite
agglomeration regarding sets of merely possible propositions. Nor could it be modified
to do so by allowing for modalized quantifiers in the initial prefix, for rather technical
reasons discussed in Fritz and Goodman (forthcoming). (Briefly, in order to accommodate
the case of infinite sets of propositions that are infinitely incompossible, in the sense that
those propositions are not included in the union of the domains of any finite set of worlds,
we would have to have infinitely many qi bound by different modalized quantifiers, which
would require an infinite nesting of necessity operators (given the definition of modalized
quantifiers), which is impossible given that, even in infinitary languages, formulas are well-
founded.)

Luckily, there is a different way we can give voice to an appropriately modalized princi-
ple of infinitary agglomeration within the finitary language we have already been working
with. For simplicity, we will restrict our attention to sets of (perhaps merely possible)
propositions q that can be picked out in terms of a condition ϕ(p, q) relating them to the
antecedent p of the counterfactuals whose consequents we are concerned to agglomerate.
In order not to lose track of these propositions as we move from world to world, we must
‘rigidify’ the condition we use to pick them out. Having done so, we can formulate a
schematic infinitary modalized version of agglomeration that is strong enough for present
purposes:
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 9

(∀Aggεπ) ↓r∀p(�q(ϕ(p, q) → (p� q)) → (p� �q(@rϕ(p, q) → q))).

Note that ϕ is not allowed to contain any free variables other than p and q. It would be
natural to lift this restriction, but this won’t be needed for the following result.

PROPOSITION 5.1. {CEMεπ,∀Aggεπ,CompC , B1, B2} � U.

Proof. It suffices to show how, using ∀Aggεπ , the step in the proof of Proposition 4.1
appealing to the finiteness of the model can be carried out for an infinite model. Assume
for contradiction that there is no u ∈ A such that w ∈ C(A, {u}). Then for all u ∈ A,
w ∈ C(A,W\{u}). Let a be an assignment function such that a(p) = A and a(r) = {w}.
By ∀Aggεπ,

w ∈ ��q((p� q) → (p� q)) → (p� �q(@r(p� q) → q))�M,a ,

and so, since the antecedent is evidently true in w,

w ∈ �p� �q(@r(p� q) → q)�M,a .

Given a’s assignment of p and r , the consequent expresses the conjunction of all possible
propositions which at w would have been the case had A been the case:

��q(@r(p� q) → q)�M,a = ⋂{Q ∈ ⋃
x∈W D≈

x : w ∈ C(A, Q)}.
Since w ∈ C(A,W\{u}) for all u ∈ A, this set contains no element of A. With B2, it
follows that it is empty, and so that w ∈ C(A, ∅), which contradicts B1. �

The appendix shows that this result cannot be strengthened to various natural ways of
weakening one of the three premises CEMεπ , ∀Aggεπ , and CompC . Among a natural
range of options, the result is therefore as strong as possible.

Given the widely endorsed background assumptions ∀Aggεπ , CompC , B1, and B2,
propositional contingentism is incompatible with CEMεπ . Those who endorse conditional
excluded middle and propositional contingentism might respond to this result by continu-
ing to endorse CEMεε but rejecting CEMεπ . We now show that this position is unstable,
as most of the arguments for conditional excluded middle support not only CEMεε but also
CEMεπ .

§6. Arguments for conditional excluded middle. A variety of data have been used
to argue for some form of conditional excluded middle. Some of these data concern our
reactions to unembedded counterfactuals—for example, how we treat them in deliberation
(Stalnaker, 1981 [1972]; Gibbard & Harper, 1981 [1978]), or how we respond to them
when posed as questions (Goodman, unpublished). Since in all such cases presumably there
actually are the propositions expressed by these counterfactuals’ antecedents and (more
importantly) consequents, it is not clear that these cases support the modalized principle
CEMεπ as opposed to merely the unmodalized CEMεε.

On the other hand, some arguments for conditional excluded middle do seem to support
the stronger modalized versions. This section considers two such arguments: one con-
cerning certain inferences involving quantified counterfactuals, and another concerning
generalizations about the chances of counterfactuals. In both cases we will argue that the
data in question are robust with respect to whether or not we take the relevant quantification
to be modalized. So, insofar as we ought to accept CEMεε in order to accommodate the
unmodalized data, it seems that we also ought to accept CEMεπ in order to accommodate
the modalized data. In fact, both of the arguments to be considered turn out to support even
the following doubly modalized version of conditional excluded middle:

(CEMππ) �p�q((p� q) ∨ (p� ¬q)).
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10 PETER FRITZ AND JEREMY GOODMAN

6.1. Quantified counterfactuals. Williams (2010) argues for conditional excluded
middle for counterfactuals by appeal to the validity of certain inferences involving coun-
terfactuals in the scope of restricted quantifiers, adapting examples from Higginbotham
(1986) that Klinedinst (2011), Kratzer (forthcoming, sec. 5) and others have used to argue
for conditional excluded middle in the case of indicative conditionals.2 He notes that the
following inference strikes us as valid:

(1) No student would have passed if they had goofed off.

(2) Therefore, every student would have failed to pass if they had goofed off.

(1) is plausibly at least materially equivalent to the more cumbersome (3):

(3) Every student is such that it is not the case that they would have passed if they had
goofed off.

The inference from (3) to (2) strikes us as valid too. But this seems to require that, in the
case of any student, if they aren’t such that they would have passed had they goofed off,
then they would have failed to pass had they goofed off: so, either, if they had goofed off,
they would have passed, or, if they had goofed off, they would have failed to pass. In other
words, the validity of this inference seems to require that conditional excluded middle hold
for every instance of the quantified counterfactual in question. Given the generality of the
phenomenon, this strongly suggests that conditional excluded middle is generally valid in
some strong sense.

Using propositional quantifiers, we can make this informal argument more systematic
as follows. If the inference from (3) to (2) is valid, then this should not depend on the
particular properties of being a student, goofing off or passing. So, in an extension of our
language with first-order quantifiers, the following sentence should be valid, where x is a
first-order variable:

(4) ∀x(Sx → ¬(Gx � Px)) → ∀x(Sx → (Gx � ¬Px)).

The validity of (4) is unlikely to be specific to the use of first-order quantifiers, and so an
analogous principle should hold for propositional quantifiers. Further, the validity of (4) is
unlikely to depend on the use of atomic predications or the use of a single quantifier. This
leads us to the following schematic principle:

(5) ∀ p̄(ϕ → ¬(ψ� χ)) → ∀ p̄(ϕ → (ψ� ¬χ)).
Modulo relabeling bound variables, the following is an instance of that schema:

(6) ∀p∀q(¬(p� q) → ¬(p� q)) → ∀p∀q(¬(p� q) → (p� ¬q)).

The antecedent of this formula is clearly true, which leads to the following principle:

(7) ∀p∀q(¬(p� q) → (p� ¬q)).

Modulo truth-functional equivalence within the scope of quantifiers, this is equivalent to
CEMεε.

An analogous argument can be given for CEMππ . Consider the result of replacing
quantificational phrases like ‘all students’ by their modalizations ‘all possible students’
in the inference from (1) to (2):

2 Williams cites von Fintel and Iatridou (2002) in this connection, but this attribution is complicated
by the role played by presupposition in their account. See Leslie (2008) for a dissenting voice in
the case of indicatives and Huitink (2010) for a reply.
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 11

(1π ) No possible student would have passed if they had goofed off.

(2π ) Therefore, every possible student would have failed to pass if they had goofed off.

The appearance of validity remains. We will assume that, if contingentism is true, then
uses of ‘all possible’ typified by (2π ) can be adequately formalized using the modalized
quantifier � defined previously; we defend this assumption in Fritz and Goodman (forth-
coming). The apparent validity of the inference from (1π ) to (2π ) therefore motivates the
following modalized analogue of (4):

(4π ) �x(Sx → ¬(Gx � Px)) → �x(Sx → (Gx � ¬Px)).

Now recall that on the propositional contingentist views we are concerned with, contin-
gency in what things there are is suitably reflected in contingency in what propositions
there are. So for many merely possible students, the propositions that they are a student,
that they goof off and that they pass are merely possible as well. Speaking loosely, this
means that there is a collection of triples of possible propositions pi , qi , and ri such that
the truth of pi → ¬(qi � ri ), for all i , entails the truth of pi → (qi � ¬ri ), for all i . As
before, this fact doesn’t seem to depend on these merely possible propositions predicating
being a student, goofing off, or passing. Likewise, it would be surprising if it depended on
the pi , qi , and ri being possible propositions, rather than being expressed by formulas built
up from proposition letters expressing possible propositions. This leads us to the following
schematic principle using propositional quantifiers:

(5π ) � p̄(ϕ → ¬(ψ� χ)) → � p̄(ϕ → (ψ� ¬χ)).
Analogous to (6), we obtain (6π ), whose antecedent is again clearly true, leading to (7π ):

(6π ) �p�q(¬(p� q) → ¬(p� q)) → �p�q(¬(p� q) → (p� ¬q)),

(7π ) �p�q(¬(p� q) → (p� ¬q)).

Finally, we note that modulo truth-functional equivalence within the scope of �, this is
equivalent to CEMππ .

6.2. Chances of counterfactuals. Another argument for conditional excluded middle
concerns counterfactuals’ chances; see Skyrms (1981 [1980]), Williams (2012), and Moss
(2013). The argument is based on the observation that, in many cases, the chances of
counterfactuals pattern with the conditional chances, at some salient time, of their con-
sequents given their antecedents. For example, the chance that this fair coin would land
heads if it were flipped is approximately .5, and the chance that it would not land heads
is 1 minus that chance. So the corresponding instance of conditional excluded middle
has chance 1, since the two counterfactuals are incompatible. More generally, the prin-
ciple linking counterfactuals’ chances and conditional chances implies, by the probability
calculus, that whenever the relevant conditional chances are defined, the corresponding
instances of conditional excluded middle will have chance 1, and hence (presumably)
are true. Since chancy processes are often taken to pose the most pressing challenge to
conditional excluded middle (see Lewis (1979)), an argument for the principle in such
cases does much to strengthen the appeal of the principle in general, and hence strongly
supports CEMεε.

We will now argue that this connection between counterfactuals’ chances and con-
ditional chances has nontrivial application even to counterfactuals concerning the very
propositions that, according to the sort of propositional contingentism under consideration,
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12 PETER FRITZ AND JEREMY GOODMAN

pose a direct challenge to CEMππ . Recall our two merely possible fair coins x and y
that, according to a propositional contingentist, are indiscernible from the perspective of
actuality. This indiscernibility entails that neither possible coin has the property of being
the one of them that would have landed heads had they both been flipped and exactly
one of them landed heads: since clearly x and y cannot both be the one that would have
landed heads had exactly one of them done so, it must be that neither of them is. So
propositional contingentism seems to lead to a failure of CEMππ , since neither the (merely
possible proposition) that x lands heads nor its negation can be counterfactually implied
by the (merely possible) proposition that x and y are fair, each tossed, and exactly one
lands heads. But the same considerations linking counterfactuals’ chances to conditional
chances seem to apply to counterfactuals embedded under modalized quantifiers, and hence
suggest that the relevant instances of conditional excluded middle in fact have chance 1.
For it seems that, for any such possible fair coins x and y, the chance that x lands heads
conditional on both being fair and flipped and only one landing heads is .5. And this
seems to go along with the (independently plausible) claim that, for any such x and y, the
chance that, had both been flipped and only one landed heads, it would have been x , is .5.
The corresponding instance of modally quantified conditional excluded middle then has
chance 1. Since propositional contingentism seems to require it to be false, the principle
linking chances and counterfactuals threatens to destabilize propositional contingentism.

In response to this argument, one might object that we shouldn’t be in the business of
forming pre-theoretical judgments about claims that embed counterfactuals under chance
operators embedded under modalized quantifiers. We grant that such claims are rather
involved, and so we should proceed with caution. We note, however, that the same pattern
of judgments can be elicited without modalized quantification, by instead considering
counterfactual circumstances involving the contingent nonexistence of actual coins. Con-
sider two actual fair coins, Penny and Dimey, that are never flipped together. Now consider
the counterfactual: had Penny and Dimey never existed, then it would be as likely as not
that, if they had both existed and been fair and been flipped and only one landed heads,
then Penny would have landed heads. This judgment strikes us as true, and it is enough for
the present argument.

§7. Conclusion. Proposition 5.1 shows that, given plausible background assumptions,
CEMεπ is inconsistent with propositional contingentism. As we have argued in the previ-
ous section, some of the most important considerations in favor of some form of conditional
excluded middle can be used to support CEMππ , and so the weaker CEMεπ . Together,
these observations constitute an argument against propositional contingentism. (We are
not making this argument ourselves, since we are not here endorsing the aforementioned
considerations in favor of CEMεε.)

It is worth noting that, unlike other unwelcome consequences of conditional excluded
middle, invoking indeterminacy in the manner of Stalnaker (1981, pp. 89–91) does nothing
to resolve the tension with propositional contingentism. Stalnaker’s idea is that, in cases
where we balk at conditional excluded middle (such as those concerning the possible
outcomes of merely possible coin flips), neither disjunct of the relevant instance of con-
ditional excluded middle is (determinately) true, despite the fact that the disjunction is
(determinately) true. Stalnaker advocates a supervaluationist theory of indeterminacy: there
are many ways of resolving the indeterminacy of the counterfactual, and a statement is
determinately true just in case it is true on each such resolution. So according to his view,
each disjunct of one of the relevant instances of conditional excluded middle is true on
some but not all resolutions; however, on all resolutions, at least one disjunct is true.
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 13

Such an account of the indeterminacy of counterfactuals opens no room between CEMεπ
and U , the claim that there are all possible propositions. For on this account, the models
used above are still adequate as models of counterfactuals given a specific resolution of
their indeterminacy. Since principles like CEMεπ and the other premises appealed to in the
entailment of Proposition 5.1 are supposed to be determinately true, they are true on every
resolution of the indeterminacy of counterfactuals. By the model-theoretic argument, U is
therefore true on every such resolution, and—since it doesn’t contain counterfactuals—
true simpliciter. This argument could easily be formalized by replacing the single function
C used to interpret counterfactuals by a set of such functions (possibly relative to the world
of evaluation), adding such a function as a parameter of evaluation, and adding an object
language ‘determinately’ operator varying this parameter. It would then be straightforward
to show that the entailment of Proposition 5.1 still holds on this model theory when all
premises and the conclusion are prefixed by the determinately operator. (We omit the
details, since they are routine.)

The notion of consequence appealed to in Proposition 5.1 is model-theoretic, defined in
terms of a class of models along familiar lines of possible world semantics. As noted above,
it is plausible that this relation is truth-preserving. Of course, this assumption is nontrivial,
and it would be interesting to develop proof systems in which the conclusion could be
shown to be derivable from the premises, either concretely by specifying such a proof or
abstractly by proving that there must be such derivation using a completeness result, but
we will not explore such questions here. (The matter is not straightforward; e.g., results
of Fritz (2017) entail that the set of formulas in the�-free fragment valid on the present
class of models is not recursively axiomatizable.)

It is also of interest to investigate how much the premises appealed to in Proposition 5.1
must be weakened to establish consistency with propositional contingentism. We consider
this question in an appendix.

§8. Appendix A: Consistency results. This appendix considers ways of weaken-
ing the premises of Proposition 5.1 to achieve consistency with propositional contingen-
tism. In particular, the following three sections consider weakening CompC , CEMεπ , and
∀Aggεπ . It will be shown that a number of natural ways of weakening one of these princi-
ples renders them compatible with propositional contingentism, sometimes even admitting
strengthened versions of the other two principles.

8.1. Weakening comprehension. CompC strikes us as an extremely plausible princi-
ple. Yet, from a formal perspective, it is not hard to see that propositional contingentism
is consistent with the other assumptions if CompC is restricted to formulas not containing
the counterfactual conditional:

(CompC [�]) ∀ p̄∃q�(q ↔ ϕ( p̄)) (ϕ free of�).

To guarantee the validity of CompC , models will be required to be based on an equivalence
system satisfying the coherence constraint alluded to in §1, which we can formulate as
follows:

DEFINITION 8.1. Let ≈ be an equivalence system on a set W . A permutation f of W is an
automorphism of ≈ if for all w, v, u ∈ W , v ≈w u iff f (v) ≈ f (w) f (u). For any w ∈ W ,
let aut(≈)w be the set of automorphisms of ≈ which map w to itself. Define ≈ to cohere
(or to be coherent) if for all w, v, u ∈ W such that v ≈w u, there is an f ∈ aut(≈)w such
that f ⊆ ≈w and f (v) = u.
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14 PETER FRITZ AND JEREMY GOODMAN

Fritz (2016) describes a way of visualizing equivalence systems which will be useful
here. Let ≈ be an equivalence system based on a finite set of worlds; for specificity, let this
be the set of natural numbers from 1 to n. The worlds will be drawn in a big circle, with 1
at the top and in clockwise order. In this big circle, each world is drawn as a smaller circle
of n dots, again with 1 represented by the element at the top and going in clockwise order.
In the circle representing ≈w, dots are connected by a path of lines just in case they are
related by ≈w. E.g., consider the equivalence system ≈ on {1, 2, 3} in which ≈2 and ≈3
are the identity relation and ≈1 relates 2 and 3 but neither of them to 1. This is drawn as
follows:

Note that this equivalence system is coherent: the transposition mapping 2 and 3 to each
other and 1 to itself is the required automorphism for 2 ≈1 3.

For the present consistency result, coherent equivalence systems will be expanded to
models by adapting Stalnaker’s selection function semantics, which associates each world
with a function mapping each nonempty proposition P to a world (understood as the closest
P-world):

DEFINITION 8.2. Let W be a set, and f a function which maps every w ∈ W to a function
fw : P(W )\{∅} → W . f is a world-selection function if for all w ∈ W and nonempty
P, Q ∈ P(W ),

(i) fw(P) ∈ P,

(i i) if w ∈ P then fw(P) = w, and

(i i i) if fw(P) ∈ Q and fw(Q) ∈ P then fw(P) = fw(Q).

Define a model 〈W,≈,C〉 to be based on such a function f if for all P, Q ⊆ W , and
w ∈ W ,

w ∈ C(P, Q) iff P = ∅ or fw(P) ∈ Q.

Let S be the class of models based on coherent equivalence systems and world-selection
functions.

As discussed in Lewis (1973, sec. 3.4), in certain cases, one can derive a selection
function f from a closeness order, letting fw(P) be the closest P-world according to
the order associated with w. In particular, for any finite equivalence system, any way
of associating every world w with a total order on worlds starting with w determines a
world-selection function. This representation of world-selection functions is useful since
the above visualization of equivalence systems is naturally extended to such an assignment
of total orders to worlds: for each world w, label each dot in the circle representing w with
the position of its world in the sequence of worlds as ordered by the order associated with
w. E.g., associate the following orders with 1, 2 and 3: 1 ≤1 2 ≤1 3, 2 ≤2 3 ≤2 1, and
3 ≤3 2 ≤3 1; this is drawn as follows:

1
23

3
12

3
21

We can now prove that S validates the desired principles. In fact, CEMεπ and ∀Aggεπ
can be strengthened to cover not only arbitrary propositions which are members of the
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COUNTERFACTUALS AND PROPOSITIONAL CONTINGENTISM 15

domain of some world, but also arbitrary combinations of such propositions—note that,
e.g., the conjunction of two propositions in the domains of some worlds need not itself be
in the domain of any world. Further, ∀Aggεπ can be strengthened to allow for arbitrary
parameters in ϕ. Using the tag ‘σ ’ to signal the schematicity analogous to the earlier use
of ε and π we now consider the following schematic principles:

(CEMσσ) � p̄((ϕ� ψ) ∨ (ϕ� ¬ψ)),
(∀Aggσσ ∗) ↓r� p̄(�q̄(ϕ → (ψ� χ)) → (ψ� �q̄(@rϕ → χ))).

Here and in the following, we count as instances of such schematic principles only sen-
tences, i.e., formulas without free variables.

PROPOSITION 8.3. CEMσσ , ∀Aggσσ ∗, B1, and B2 are valid on S.

Proof. Routine. �
By Proposition 5.1, it is clear that CompC is not valid on S, but it might also be instruc-

tive to establish this using a concrete counterexample:

PROPOSITION 8.4. CompC is not valid on S.

Proof. Let M = 〈W,≈,C〉 be the model based on {1, 2, 3} displayed above; it is easy to
see that it is in S. Let a be an assignment function such that a(p) = {1}. Then �↓w�(p →
(¬p � w))�M,a = {2}. Since {1} ∈ D≈

1 but {2} /∈ D≈
1 , the instance of CompC for this

formula is not true in M . �

PROPOSITION 8.5. CompC [�] is valid on S.

Proof. Analogous to the proof of Proposition 8.8. �
Since S contains nonempty models with varying propositional domains, we obtain:

COROLLARY 8.6. {CEMσσ,∀Aggσσ ∗,CompC [�], B1, B2} � U.

Furthermore, the discussion of various coherent equivalence systems in Fritz (2016)
shows that there is a wide variety of countermodels to this entailment.

8.2. Weakening conditional excluded middle. We will now show that propositional
contingentism can be upheld if CEMεπ is replaced by CEMεε. To construct the relevant
class of models, we first adapt the coherence constraint for equivalence systems to models.

DEFINITION 8.7. Let 〈W,≈,C〉 be a model. For any permutation f of W , let ḟ be the
permutation of P(W ) mapping any P ⊆ W to { f (w) : w ∈ P}. Let a permutation f
of W be an automorphism of C if for all P, Q ⊆ W , C( ḟ (P), ḟ (Q)) = ḟ (C(P, Q)).
For any w ∈ W , let aut(≈,C)w be the set of permutations which are automorphisms of
≈ and C and which map w to itself. Define 〈W,≈,C〉 to cohere (or to be coherent) if for
all w, v, u ∈ W such that v ≈w u, there is an f ∈ aut(≈,C)w such that f ⊆ ≈w and
f (v) = u.

PROPOSITION 8.8. CompC is valid on the class of coherent models.

Proof. Let M = 〈W,≈,C〉 be a coherent model. For any permutation f which is an
automorphism of both ≈ and C , an induction on the complexity of formulas ϕ establishes
that for all assignment functions a,

�ϕ�M, ḟ ◦a = ḟ (�ϕ�M,a).
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16 PETER FRITZ AND JEREMY GOODMAN

Consider any assignment function a with im(a) ⊆ D≈
w and f ∈ aut(≈,C)w such that

f ⊆ ≈w. Then ḟ ◦ a = a. So for all ϕ, ḟ (�ϕ�M,a) = �ϕ�M,a . Thus, if v ≈w u, then there
is a permutation f as required by coherence such that f (v) = u, and so for any such v, u,
v ∈ �ϕ�M,a iff u ∈ �ϕ�M,a . Hence �ϕ�M,a ∈ D≈

w , as required. �
In order to validate CEMεε, we again adapt Stalnaker’s selection functions, although

now we associate each world w with a selection function mapping each nonempty set of
atomic propositions at w to an atomic proposition at w. We write W/≈w for the set of
equivalence classes of ≈w.

DEFINITION 8.9. Let ≈ be an equivalence system on a set W , and f a function which
maps every w ∈ W to a function fw : P(W/≈w)\{∅} → W/≈w. f is an atom-selection
function if for all w ∈ W and nonempty X, Y ∈ P(W/≈w),

(i) fw(X) ∈ X,

(i i) if w ∈ ⋃
X then fw(X) = [w]≈w , and

(i i i) if fw(X) ∈ Y and fw(Y ) ∈ X then fw(X) = fw(Y ).

Define a model 〈W,≈,C〉 to be based on such a function f if for all P, Q ⊆ W , and
w ∈ W ,

w ∈ C(P, Q) iff P = ∅ or fw({[v]≈w : v ∈ P}) ∩ P ⊆ Q.

Let A be the class of coherent models based on atom-selection functions.

Again, even the schematic strengthening of ∀Aggεπ is valid on this class of models:

PROPOSITION 8.10. CompC , ∀Aggσσ ∗, B1, and B2 are valid on A.

Proof. Establishing the validity of ∀Aggσσ ∗, B1, and B2 is routine; CompC follows
from Proposition 8.8. �

Given Proposition 5.1, CEMεπ cannot be valid on A. The following proof gives a
concrete countermodel. As with world-selection functions on finite equivalence systems,
atom-selection functions on finite equivalence systems can be specified using an assign-
ment of total orders on atomic propositions with worlds. Again, this can be visualized by
numbering dots, although now connected dots must be labeled by the same number.

PROPOSITION 8.11. CEMεπ is not valid on A.

Proof. Consider the same equivalence system as in the proof of Proposition 8.4, but with
the following ordering on atoms giving rise to an atom-selection function:

1
22

3
12

3
21

Let M be the depicted model. Consider an assignment function a such that a(p) = {2, 3}
and a(q) = {2}. Then 1 /∈ �(p � q) ∨ (p � ¬q)�M,a . Since a(p) ∈ D≈

1 and a(q) ∈
D≈

2 , CEMεπ is not true in 1. �
The weaker principle CEMεε is valid on S. Indeed, so is a strengthening of CEMεε in

which the consequents of the conditionals are specified using a formula not containing�
or ∀, using existing parameters and the antecedent, which might itself be specified using
any formula and possible parameters. To state this principle, let ϕ[ψ/p] be the result of
uniformly replacing p by ψ in ϕ. For any sequence of operators ō, define:
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(CEMσ ∗[ō]) � p̄∀q̄((ϕ� ψ(q̄, r)[ϕ/r ]) ∨ (ϕ� ¬ψ(q̄, r)[ϕ/r ])),

(ψ free of the operators in ō).

PROPOSITION 8.12. CEMσ ∗[∀,�] is valid on A.

Proof. Let M = 〈W,≈,C〉 be a model in A based on an atom-selection function f ,w ∈
W , and a an assignment function mapping each qi to a member of D≈

w . Let P = �ϕ�M,a

and Q = �ψ(q̄, r)[ϕ/r ]�M,a . If P is empty, the relevant instance of CEMσ ∗[∀,�] is
trivially true in w, so assume otherwise. Let X = fw({[v]≈w : v ∈ P}). It suffices to prove
that X ∩ P ⊆ Q or X ∩ P ⊆ W\Q. Note that for any formula ϑ , ��ϑ�M,a ∈ {∅,W } ⊆
D≈
w . So Q is a Boolean combination of elements of D≈

w and P , from which the claim
follows. �

Since A contains nonempty models with varying propositional domains, we obtain:

COROLLARY 8.13. {CEMσ ∗[∀,�], ∀Aggσσ ∗,CompC , B1, B2} � U.

As illustrated by the model constructed in the proof of Proposition 8.11, there also seems
to be a nontrivial range of countermodels to this entailment.

Interestingly, both restrictions to CEMσ ∗[∀,�] in Proposition 8.12 are essential, as we
now show:

PROPOSITION 8.14. Neither CEMσ ∗[∀] nor CEMσ ∗[�] is valid on A.

Proof. Consider the following models based on atom-selection functions:

1
2

22
2

4
1

33
2

4
3

12
3

4
3

21
3

4
2

33
1

M∀

1
2

23
3

5
1

34
2

5
3

12
4

5
4

21
3

5
2

43
1

M�

For the case of universal quantifiers, consider M∀ and let a be an assignment function
such that a(p) = {2, 3, 4} (note that at 2 and 5, there is the proposition {2, 3, 4}). Then
∀q�(p → ∃r�((p ∧ q) ↔ r)) is true in 2 but not in 3 or 4, so the following formula is
false in 1 under a:

(p� ∀q�(p → ∃r�(p → (q ↔ r)))) ∨ (p� ¬∀q�(p → ∃r�(p → (q ↔ r)))).

For the case of counterfactuals, consider M� and let b be an assignment function such
that b(p) = {2, 3, 4} and b(q) = {4, 5} (note that in 1, there is the proposition {4, 5}).
Then the following formula is false in 1 under b:

(p� (q � p)) ∨ (p� ¬(q � p)).

As both M∀ and M� are coherent, the claim follows. �
Since CEMσ ∗[] is not valid on A, one might wonder wether the argument against

propositional contingentism can be reinstated using CEMσ ∗[] instead of CEMεπ . The
following highly restrictive model theory shows that this is not possible without additional
assumptions:

DEFINITION 8.15. For any set W , define the minimal model on W to be the model 〈W,≈
,C〉 such that:
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18 PETER FRITZ AND JEREMY GOODMAN

v ≈w u iff w = v = u or w /∈ {v, u}, and

w ∈ C(P, Q) iff

{
w ∈ Q if w ∈ P,

P ⊆ Q otherwise.

Let M be the class of minimal models.

PROPOSITION 8.16. B1, B2, CompC , and ∀Aggσσ ∗ are valid on M.

Proof. B1, B2, and ∀Aggσσ ∗ are routine; CompC follows from the fact that minimal
models are coherent. �

By Proposition 5.1, CEMεπ cannot be valid on M . It is also routine to show this using
concretely using any minimal model based on a set with more than two elements.

PROPOSITION 8.17. CEMσ ∗[] is valid on M.

Proof. Let M = 〈W,≈,C〉 be a minimal model, w ∈ W , and a an assignment function
mapping each qi to a member of D≈

w . Let P = �ϕ�M,a and Q = �ψ(q̄, r)[ϕ/r ]�M,a . The
claim is immediate if w ∈ P , so assume otherwise. For any v, u ∈ P , the transposition
g switching v and u is an automorphism as required in the definition of coherence, so as
in the proof of Proposition 8.8, �ψ(q̄, r)[ϕ/r ]�M,ġ◦a = ġ(�ψ(q̄, r)[ϕ/r ]�M,a), and as the
relevant parameters are invariant under ġ, it follows that Q = ġ(Q). Thus P ⊆ Q or
P ⊆ W\Q as required. �

Using minimal models on sets with more than two elements, which have varying propo-
sitional domains, we obtain a strengthening of Corollary 8.13:

COROLLARY 8.18. {CEMσ ∗[], ∀Aggσσ ∗,CompC , B1, B2} � U.

However, minimal models are so restrictive that they leave open the possibility of a
triviality argument against propositional contingentism using CEMσ ∗[], or a principle in
strength between CEMεε and CEMσ ∗[]. We leave a more detailed investigation of the
diversity of models satisfying such principles for another occasion.

8.3. Weakening agglomeration. We show that Proposition 5.1 essentially relies on
the infinitary version of agglomeration, by constructing a class of infinite models which
validates both CEMεπ and Aggεπ despite invalidating U . In fact, the class validates the
following strengthening of these principles:

(CEMπσ) �p�q̄((p� ϕ) ∨ (p� ¬ϕ)),
(Aggσσ) � p̄(((ϕ� ψ1) ∧ (ϕ� ψ2)) → (ϕ� (ψ1 ∧ ψ2))).

In the following definition, let a set P ⊆ W be cofinite if W\P is finite.

DEFINITION 8.19. For any infinite set W , define the Fréchet model on W to be the model
〈W,≈,C〉 such that:

v ≈w u iff w = v = u or w /∈ {v, u}, and

w ∈ C(P, Q) iff

⎧⎪⎨
⎪⎩
w ∈ P and w ∈ Q, or

w /∈ P, P is finite and P ⊆ Q, or

w /∈ P and P ∩ Q is cofinite.

Let F be the class of Fréchet models.

PROPOSITION 8.20. B1, B2, CompC , and CEMπσ are valid on F.
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Proof. B1 and B2 are routine; CompC follows from the fact that Fréchet models are
coherent. For CEMπσ , we first show that for any formula ψ( p̄), Fréchet model M and
assignment function a whose range is included in

⋃
w∈W D≈

w , P = �ψ�M,a is finite or
cofinite. Let wi ∈ W such that a(pi ) ∈ D≈

wi
for all i ≤ n. For any v, u ∈ W\{wi : i ≤ n},

the transposition f switching v and u is an automorphism as required in the definition
of coherence, so as in the proof of Proposition 8.8, �ψ�M, ḟ ◦a = ḟ (�ψ�M,a). Continuing

as in the proof of Proposition 8.16, all the relevant parameters are invariant under ḟ , so
ḟ (P) = P . Thus P is finite or cofinite. The validity of CEMπσ is now routine, using the
fact just established for the third condition of C . �

By Proposition 5.1, ∀Aggεπ cannot be valid on F . It is also routine to show this using
concretely using any Fréchet model.

PROPOSITION 8.21. Aggσσ is valid on F.

Proof. Routine. �
All Fréchet models have varying propositional domains, so we obtain:

COROLLARY 8.22. {CEMπσ,Aggσσ,CompC , B1, B2} � U.

As with minimal models, Fréchet models are so restrictive that they leave open the
possibility of a triviality argument on the basis of CEMπσ and Aggσσ . It would also
be interesting to know whether a nontrivial class of models can be found which validates
not only CEMπσ but also CEMσσ , along with Aggσσ and CompC , but we will not pursue
this question here.
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