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Abstract

We use the normality framework of Goodman and Salow (2018, 2021,
2023) to investigate the dynamics of rational belief. The guiding idea is
that people are entitled to believe that their circumstances aren’t espe-
cially abnormal. More precisely, a rational agent’s beliefs rule out all and
only those possibilities that are either (i) ruled out by their evidence or
(ii) sufficiently less normal than some other possibility not ruled out by
their evidence. Working within this framework, we argue that the logic of
rational belief revision is much weaker than is usually supposed. We do so
by isolating a natural family of orthodox principles about belief revision,
describing realistic cases in which these principles seem to fail, and show-
ing how these counterexamples are predicted by independently motivated
models of the cases in question. In these models, whether one evidential
possibility counts as sufficiently less normal than another is determined by
underlying probabilities (together with a contextually determined ques-
tion). We argue that the resulting probabilistic account of belief compares
favorably with other such accounts, including Lockeanism (Foley, 1993), a
‘stability’ account inspired by Leitgeb (2017), the ‘tracking theory’ of Lin
and Kelly (2012), and the influential precursor of Levi (1967). We show
that all of these accounts yield subtly different but similarly heterodox
logics of belief revision.

In science and in ordinary life, we rely on beliefs that go beyond what is
strictly entailed by our evidence. How should such beliefs evolve in response to
new evidence?

Consider the following example:

Bias Detection
You know that a bag is either ‘unbiased’, containing five red balls
and five black balls, or ‘red-biased’, containing six red balls and four
black balls. In fact, it is red-biased. You draw a ball at random from
the bag, note its color, put it back in the bag, and repeat.

Unless you have very bad luck, making enough draws from the bag will enable
you to know, and hence to rationally believe, that it is red-biased. For if rational
inductive belief were impossible here, it is hard to see how it could ever be
possible in science, a conclusion we find intolerable.1

Assuming you are not very unlucky, then, there will be a first draw from
the bag after which your evidence supports believing that it is red-biased; call
it draw n. Since draw n tips the scales in favor of believing that the bag is red-
biased rather than unbiased, draw n must have been a red ball. Now suppose
you draw a black ball on draw n+1. This is compatible with what your evidence

1Bacon (2014) and Goodman and Salow (2023) defend this claim at greater length; Harman
(1986, p. 70) and Carter and Hawthorne (forthcoming) discuss similar examples.
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supported believing after draw n. For even if your evidence had logically entailed
that you are drawing from a red-biased bag, the bias is only 60%, which isn’t
enough to support believing that the next draw isn’t going to be a black ball; you
should still suspend judgment on the color of the next drawn ball.2 Moreover,
after noting that draw n + 1 is a black ball, your evidence no longer supports
believing that the bag is red-biased rather than unbiased: you should again
suspend judgment. For your evidence didn’t support believing that the bag is
biased after draw n−1, and drawing one red and one black ball clearly can’t tip
the scales in favor of believing that the bad doesn’t contain an equal number of
red and black balls.

Suppose that, throughout, you believe all and only what your evidence sup-
ports believing. We then have a case where learning something compatible with
what you believed (that draw n+1 is a black ball) causes you to give up a belief
(that the bag is red-biased).

This presents a challenge to the orthodox AGM framework for theorizing
about belief revision. According to AGM (Alchourrón et al., 1985), learning
something compatible with your beliefs should never lead you to give up any
beliefs.3 This is because AGM embodies a strong kind of conservatism: your be-
liefs should be consistent and closed under logical consequence, and you should
revise your beliefs in the simplest way possible when you can do so while main-
taining consistency and closure. So if what you learn is something you already
believed, then you shouldn’t change your beliefs at all. And if what you learn
is something you weren’t previously opinionated about, as in Bias Detection,
then you should end up believing all and only the consequences of what you
previously believed together with what you just learned. Only when you learn
something surprising – that is, something you previously believed to be false –
is the story more complicated. While AGM has not gone unchallenged, we will
argue that accommodating cases like Bias Detection motivates more radical
departures from it than are usually considered, such as sometimes changing your
beliefs upon learning something you already believed.

But we agree with AGM that one’s beliefs at any given time should be logi-
cally consistent and closed under logical consequence: we share its conservative
approach to synchronic constraints on rational belief. This means that we can-
not vindicate the above verdicts about Bias Detection in the most obvious
way – by accepting Lockeanism, the view that one should believe all and only
the propositions that have high enough probability given one’s evidence. This is
because Lockeanism recommends having beliefs that are neither consistent nor
closed under logical consequence.4

2This is assuming a notion of belief which corresponds, roughly, to what you have a shot
at knowing, as discussed in §3.1.

3This is the principle ♦− below; see Appendix D.1 for discussion of how it relates to
principles formulated in terms of the ∗ operator standardly used to state AGM. Appendix D.2
explains how it, and various other principles we discuss throughout, can be thought of as
corresponding to principles from the literature on nonmonotonic logic.

4This assumes that the Lockean threshold for ‘high enough’ probability is less than 1, as it
must be in order to avoid skepticism in Bias Detection. Our verdicts about Bias Detection
follow from Lockeanism if the threshold for ‘high enough’ probability is at least .6: the red draw
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This paper shows how the normality framework of Goodman and Salow
(2018, 2021, 2023) can be used to illuminate the dynamics of rational belief
in examples like this. We proceed incrementally, offering increasingly flexible
models to accommodate different kinds of cases, and seeing which principles of
belief revision stand and fall along the way. Although we will argue that few
principles of belief revision hold without exception, we will also show that many
principles are valid on natural classes of models. For this reason, we recommend
a reorientation in theorizing about belief revision: rather than searching for
exceptionless generalizations, we should look for productive if not universally
appropriate idealizations that have interesting generalizations as consequences.

1 Five principles

Our investigation will focus on the following five principles:5

♦− If you don’t believe not-p and then learn p, you shouldn’t give up any
beliefs as a result of learning p.

♦R If you don’t believe not-p and then learn p, you shouldn’t reverse any of
your opinions as a result of learning p.

�+ If you believe p and then learn p, you shouldn’t form any new beliefs as a
result of learning p.

�− If you believe p and then learn p, you shouldn’t give up any beliefs as a
result of learning p.

�R If you believe p and then learn p, you shouldn’t reverse any of your opinions
as a result of learning p.

Each of these principles is a consequence of AGM. By contrast, Lockeanism
predicts violations of all of these principles except for �R.6

Although we think Lockeanism is mistaken, since it predicts that agents
should have inconsistent beliefs, we agree with its prediction that all of the
above principles except for �R can fail. We will make this case in stages, since

that finally boosts the probability of red bias above the threshold won’t push the probability
of black on the next draw below the threshold; black on the next draw will then push the
probability of red bias back below the threshold.

5�/♦ indicate the prior status of what is learned (whether it was previously believed/not
disbelieved), and +/−/R characterize what the principle prohibits (belief gain/loss/reversal).
We don’t consider a principle ♦+, because it (absurdly) prohibits gaining new beliefs when
you learn things you didn’t previously disbelieve.

6Counterexamples to �+ are predicted when p has above-threshold probability and q has
above-threshold probability conditional on p but not unconditionally; counterexamples to �−
are predicted when p has above-threshold probability, and q has above-threshold probability
unconditionally but not conditional on p; and counterexamples to ♦R (and hence also to ♦−)
are predicted when not-p has below-threshold probability, q has above-threshold probability,
and not-q has above-threshold probability conditional on p. Lockeanism entails �R if and

only if the threshold for ‘high enough’ probability exceeds
√

5−1
2
≈ .62; see Shear and Fitelson

(2019) for discussion.
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in our preferred framework some of these principles are more robust than others,
and modelling their failures will require increasingly flexible classes of models. So
while we agree with Lockeanism about which principles hold without exception,
we disagree about the ubiquity of counterexamples.

Our preferred normality framework shares a certain basic feature with the
Lockean approach, which is absent from AGM: a distinction between one’s ev-
idence, which accumulates monotonically, and one’s inductive beliefs, which go
beyond what one’s evidence entails and may evolve in more complicated ways.
The need for this kind of distinction is a crucial insight of probabilistic ways of
thinking about rational belief, but it is also separable from the specific Lockean
account of how probability and belief are related.

2 The normality framework

This section presents a framework for theorizing about belief in terms of the
comparative normality of possibilities compatible with one’s evidence. After
presenting the formalism, we revisit the five principles from the last section and
explain how they relate to some natural conditions on normality structures.

A note on terminology: we call these relations of comparative normality
in deference to the existing literature, but they are meant to be understood
through their role in characterizing rational belief and knowledge, not in terms
of some pre-theoretical understanding of what is “normal”. Indeed, comparative
plausibility would arguably have been more natural terminology, especially in
models where these relations are closely tied to probability (as discussed in §6).

2.1 Normality structures

We will be exploring the dynamics of belief using the following class of structures
introduced in Goodman and Salow (2021):

Definition 2.1. A normality structure is a tuple 〈S, E ,W,�,Ï〉 such that:

1. S is a non-empty set (of states),

2. E ⊆ P(S)\{∅} (the possible bodies of evidence),

3. W = {〈s, E〉 : s ∈ E ∈ E} (the set of situations),

4. � is a preorder on W (read ‘w � v’ as ‘w is at least as normal as v’),

5. Ï is a well-founded relation on W (read ‘w Ï v’ as ‘w is sufficiently more
normal than v’), such that, for any situations w1, w2, w3, w4:

(a) If w1 Ï w2, then w1 � w2;

(b) If w1 � w2 Ï w3 � w4, then w1 Ï w4.
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Definition 2.2. We define two functions from situations to sets of situations:

• RE(〈s, E〉) = {〈s′, E′〉 ∈W : E = E′} (evidential accessibility)

• RB(w) = {v ∈ RE(w) : ∀u ∈ RE(w)(u 6Ï v)} (doxastic accessibility)

RE(w) represents the set of situations compatible with your evidence in w,
and RB(w) represents the set of situations compatible with what you believe in
w. So understood, the above characterization of RE encodes the idea that your
evidence is true and transparent (i.e., your evidence entails what your evidence
is), while the characterization of RB(w) captures the basic idea of the normality-
based account of inductive belief: your beliefs go beyond what is entailed by your
evidence insofar as you are entitled to disregard any situation that is sufficiently
less normal than any other situation compatible with your evidence.

The main tradition in doxastic logic, going by back to Hintikka (1962), mod-
els belief directly in terms of RB : an agent believes a proposition in a situation w
if and only if that proposition is true in every situation v doxastically accessible
from w (i.e., in every v ∈ RB(w)). This approach is especially useful when we
are interested in agents’ beliefs about their own beliefs.

But in theories of belief revision, we want a notion of belief such that, after
getting new evidence, an agent’s new beliefs needn’t be inconsistent with their
prior beliefs. RB doesn’t do this, since RB(w) ∩ RB(v) = ∅ whenever one has
different evidence in w and v. We need a more coarse-grained way of modelling
agents’ beliefs about the world, which brackets their beliefs about what evidence
they have. To this end we identify the objects of belief not with propositions
(modeled as sets of situations) but as sets of states (which we call events). In
effect, this allows us to model agents’ beliefs about the (unchanging) state of the
world, while ignoring what they believe about their own (changing) perspective
on it.

Our approach will also be coarse-grained in a second way. Rather than treat-
ing what one believes as a function of the situation one is in, we will treat it as
a function of one’s evidence. This is possible because Definitions 2.1-2.2 entail
that what one believes is determined by one’s evidence: for all s, s′ ∈ E ∈ E ,
RB(〈s, E〉) = RB(〈s′, E〉).

Summing up: rather than theorizing about belief using the function RB from
situations to sets of situations, we will instead be working with a partial function
B from sets of states (the possible bodies of evidence) to subsets thereof (the
states compatible with your beliefs given that evidence).

Definition 2.3. B(E) = {s′ : 〈s′, E′〉 ∈ RB(〈s, E〉) for some s ∈ E and E′ ∈ E}

Definitions 2.1-2.2 also entail that the only normality relations that make a
difference to doxastic accessibility, and hence to belief, are those among situa-
tions that agree on your evidence. This makes it possible, and often convenient,
to think of � and Ï as evidence-relative relations on states compatible with
one’s evidence. To this end we adopt the following notational convention:
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Convention 2.1. Let s �E s′ and s ÏE s′ be shorthand for 〈s, E〉 � 〈s′, E〉
and 〈s, E〉 Ï 〈s′, E〉, respectively. This shorthand carries the presupposition that
s, s′ ∈ E ∈ E (just as B(E) presupposes that E ∈ E).

Together with Definitions 2.1-2.3, this allows for the following simple and direct
characterization of belief:

Corollary 2.1. B(E) = {s ∈ E : ∀s′ ∈ E(s′ 6ÏE s)}

Given the above characterization of belief, normality structures might seem
unnecessarily complicated. Why not simply take Ï as basic, understood as an
evidence-relative relation between states? One reason for the detour through sit-
uations and accessibility is to make explicit how belief as we are modeling here
relates to belief as it is understood in doxastic logic, and how normality struc-
tures relate to more general models in which situations have further structure
or in which evidential accessibility is not an equivalence relation; see Goodman
and Salow (2023) and appendices B and C. We include � in addition to Ï

because, as we will see below, it allow us to formulate natural principles with
important implications for belief dynamics. Additionally, � is needed to model
knowledge in addition to belief, as explained Goodman and Salow (2021), and
hence to connect theories of belief revision with traditional epistemology, as in
Stalnaker (2006) and §3.1 below.7

2.2 Belief dynamics in normality structures

Let us now turn to the dynamics of belief. To model these dynamics using
normality structures, we treat ‘learning’ that an event obtains as simply adding
the fact that it obtains to your evidence. Since what one believes is a function
of one’s evidence, we can then investigate belief dynamics by comparing one’s
beliefs given evidence E to one’s beliefs given evidence E ∩ p, where p is the
event that one learns obtains.

The five principles from §1 can then be expressed as follows:

♦−: If B(E) ∩ p 6= ∅, then B(E ∩ p) ⊆ B(E).

♦R: If B(E) ∩ p 6= ∅, then B(E) ∩B(E ∩ p) 6= ∅.

�+: If B(E) ⊆ p, then B(E) ⊆ B(E ∩ p).

�−: If B(E) ⊆ p, then B(E ∩ p) ⊆ B(E).

�R: If B(E) ⊆ p, then B(E) ∩B(E ∩ p) 6= ∅.

We will see shortly that not even �R is valid on the class of all normality
structures. This fact both illustrates the generality of the normality framework
and motivates the search for additional constraints.

7Dabrowski et al. (1996) is an influential precedent for modelling relata of accessibility
relations as, in effect, state/set-of-states pairs.

6



To this end, consider the following four potential constraints on comparative
normality, which will be helpful in organizing our subsequent investigation:

weak statism: � is evidence-independent.

If s �E s′, then s �E′ s′.

statism: Both � and Ï are evidence-independent.

If s �E s′, then s �E′ s′; and if s ÏE s′, then s ÏE′ s′.

collapse: All differences in normality are sufficient differences.

If v � w and w 6� v, then v Ï w.

comparability: Situations with the same evidence are related by �.

s �E s′ or s′ �E s.

How do these constraints interact with our five principles? We can answer this
question with a pair of propositions, giving an example of the kind of results we
will explore in this paper.

It turns out that each of our five principles can be validated by imposing
some combination of the above constraints on comparative normality:8

Proposition 1.

• ♦R (and hence also �R) is valid on the class of normality structures
satisfying weak statism.

• Additionally, �+ and �− are valid on the class of normality structures
satisfying statism (and hence also on the class of structures satisfying
both weak statism and collapse).

• Additionally, ♦− is valid on the class of normality structures satisfying
statism, collapse, and comparability.

Conversely, there are no further such entailments:

Proposition 2.

1. ♦− can fail in normality structures satisfying statism and collapse,
and also in normality structures satisfying statism and comparability.

2. �+ and �− can both fail in normality structures satisfying weak statism.

3. �R (and hence also ♦R) can fail in normality structures satisfying both
collapse and comparability.

8All proofs are relegated to Appendix E.
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Here is a roadmap of the main technical results of this paper. In §4 we
describe a potential counterexample to ♦− from the literature, which is naturally
modelled as trading on failures of comparability. In §5 we describe cases
in which ♦− fails due to failures of collapse rather than comparability,
and show that combining statism and comparability determines a stronger
logic of belief revision than combining statism and collapse does. In §6 we
introduce a class of normality models with additional probabilistic structure,
which satisfy weak statism and comparability but neither statism nor
collapse. In §7 we use these models to argue against �+; notably, these models
validate �− despite invalidating statism. In §8 we motivate a generalization of
these models to argue against ♦R; despite now invalidating even weak statism,
these models still validate �−. In §9 we prove corresponding results about other
probabilistic models of belief revision from the literature. In §10 we describe
cases in which �− seems to fail, and show how our probabilistic models can be
further generalized to accommodate such failures while still validating �R.

3 On the interpretation of normality structures

This section (which can be skipped without loss of continuity) provides further
detail on how the notions of belief, evidence, and learning modelled by normality
structures are to be interpreted.

3.1 Evidence, belief, and knowledge

Normality structures were originally introduced to model knowledge. As men-
tioned at the end of §2.1, these connections to knowledge provide an important
anchor in interpreting belief and evidence in normality structures. This section
explains the most important of these connections, since they provide a distinc-
tive and opinionated perspective on the question: what is a theory of belief
revision a theory of ?

Knowledge is intermediate in strength between the operative notion of belief
and the operative notion of evidence: your evidence is a subset of what you
know, which is in turn a subset of what you believe. As with belief, we are
interested here in inductive knowledge, which typically goes beyond what is
logically entailed by your evidence. For example, you can come to know that
you’ve lost weight by observing the reading of a scale, or come to know that
a die is biased by rolling it repeatedly and observing how it lands. Below we
will consider more examples like these and show how they can be modeled using
normality structures. Throughout we should be understood as modeling rational
belief; we are not attempting to capture irrational patterns of belief.

Not all (rational) beliefs are knowledge. This is in part because not all such
beliefs are true – induction is fallible. But knowledge is the aim of belief: you
shouldn’t disregard a possibility if, given your evidence, you have no hope of
knowing that it does not obtain. The best case for knowledge is when things are
most normal: while there are different ways of modeling knowledge in normality
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structures, they all agree that belief and knowledge coincide in situations that
are at least as normal as all other situations in which you have the same evidence;
see Goodman and Salow (2023). These descriptive and normative connections
to knowledge distinguish the operative notion of belief from weaker ones (e.g.
thinking that a particular horse will win a race) and stronger ones (e.g. Cartesian
absolute certainty); see Goodman and Holgúın (2023), who suggest that ‘being
sure’ picks out such a notion.

In allowing that we know more than is entailed by our evidence, we are
denying that all evidence is knowledge, and hence disagreeing with the letter
of the ‘E=K’ thesis defended by Williamson (2000). But this is not a deep
disagreement, since nothing turns on our use of the word ‘evidence’ to mark the
distinction we care about. We would be happy to instead use ‘starting points’
or some other more neutral terminology. The point of the distinction is best
illustrated by its usefulness in modeling particular examples: if what we are
interested in is what a rational agent should believe about their weight, or
about the bias of a die, then it is usually best to treat as unproblematic their
information about the readings of their scale, or about the observed results of
die rolls, as well as various bits of background knowledge.

This way of modelling evidence is an idealization. For example, in normality
structures one’s evidence is transparent, in the sense that one’s evidence entails
what one’s evidence is: if v ∈ RE(w), then RE(v) = RE(w). We agree with
Williamson (2000) that this is not true about real agents’ evidence, however
‘evidence’ is understood. Appendix C discusses some strategies for generalizing
normality structures to accommodate failures of transparency, but this remains
an important area for further work.

One final terminological point. In keeping with the literature on belief revi-
sion, we reluctantly use the word “learn” to describe how one’s evidence about
the state of the world evolves. But what we “learn” in the ordinary sense of
the word is what we come to know, and coming to know something is neither
necessary nor sufficient for it to come to be entailed by your evidence. It isn’t
necessary because you might have already known the new claim inductively; it
isn’t sufficient because the new evidence can put you in a position to gain further
inductive knowledge. For more on the dynamics of knowledge in the normality
framework, and how they depend on the distinction between one’s evidence and
one’s knowledge more generally, see Goodman and Salow (2023).

3.2 Iterated Belief Revision

A central topic in the post-AGM literature is the search for principles about,
and models of, iterated belief revision – that is, learning one thing after another.
The AGM axioms are silent on this question, and the simple plausibility-order
models of AGM revision aren’t able to model iterated revision in cases where
the propositions that one sequentially learns are jointly inconsistent.9 Despite

9When these propositions are consistent we could identify the result of learning them
sequentially with the result of learning their conjunction.
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the vast and ingenious literature on how to model such cases, our view is that
it concerns a pseudo-problem: there are no such cases. This is because learning
a proposition entails knowing that it is true; only truths can be known to be
true; and no sequence of true propositions is jointly inconsistent.

We share this sensibility with those working in the Bayesian tradition. They
typically don’t take there to be any special problem of iterated learning: you just
keep conditionalizing. A fortiori, there is no problem of iterated belief revision
for Lockeans, since one’s beliefs are determined by one’s probabilities which
evolve unproblematically. The problem of what to do when you learn p and
then learn some q inconsistent with p is not so much solved as rejected: learning
must be understood in such a way that this never happens, since one cannot
condition Pr(·|p) on any q inconsistent with p.

While normality structures are much more similar to models of AGM than
to Lockean models of belief in terms of probabilities, with respect to how they
handle iterated belief revision it is the other way around. Only truths can be
learned, because one’s evidence about the state of the world is always consistent
with the state that actually obtains. Of course, it can still happen that as a result
of iterated learning you go from believing p to believing q, where these are
jointly inconsistent. But this happens even without iterated learning, whenever
you learn something that you initially believed to be false.

This feature of our approach helps to resolve interpretive puzzles that arise
in applying theories of belief revision to cases in which a series of informants
tell conflicting stories. There is debate about whether what you learn should
be characterized as what you are told, or that this is what you are told, or
both.10 In the case of conflicting stories, the normality framework rules out the
first and third options: those would involve learning something false, since the
stories cannot all be true.

One might worry that, on such a conception of learning, what we can learn
will be (implausibly) confined to what it is impossible for us to be mistaken
about. But this isn’t so. The fact that nothing you learn is something that you
are mistaken about doesn’t mean that nothing you learn is something you could
have been mistaken about. What is true is that, in many cases, the propositions
that we learn are such that, had we been mistaken about them, we would also
have been mistaken about whether we had learned them. For example, assuming
that perception is a way of learning about one’s environment, misperception of-
ten involves mistakenly thinking that one has learned about one’s environment.
This means having false beliefs about what one’s evidence is, and so requires
rejecting the idealization that evidence is always transparent, in the sense of set-
tling what your evidence is. This idealization is built into normality structures,
and relaxing it is not straightforward. Appendix C explores some strategies for
how this might be done. For now, we simply reiterate that the transparency
of evidence is a useful idealization in the kind of cases we care about. In Bias
Detection, for example, we aren’t considering the possibility that you might

10Rott (2004) endorses the first option; Lin (2019) is sympathetic to the second; Stalnaker
(2009) proposes the third.
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be wrong about the two possible red/black ratios, or that you might be misper-
ceiving or misremembering what colors you’ve observed on different draws. Such
errors are not impossible, and are sometimes important to consider; but they
are a distraction when we are trying to understand the structure and dynamics
of your inductive beliefs about the red/black ratio in the bag you’re drawing
from in an ordinary version of the case.

3.3 Learning, hard and soft

Working in a framework in many respects similar to ours, van Benthem (2007)
and Baltag and Smets (2008) influentially distinguish between learning ‘hard
facts’ and learning ‘soft facts’ – h-learning and s-learning, for short. Cases of
h-learning involve irrevocably eliminating all possibilities in which what you’ve
learned is false. By contrast, cases of s-learning involve merely reducing the
plausibility of some or all possibilities in which what you’ve learned is false,
so that every possibility in which it is false ends up less plausible than some
possibility in which it is true (and not vice versa).11

What we have been calling learning in normality structures is like h-learning:
it simply eliminates all possibilities incompatible with what you learn. But some-
thing reminiscent of s-learning can occur in normality structures that violate
statism: discovering p can change the comparative normality of states that re-
main compatible with your evidence (in the sense that s �E s′ and s �E∩p s

′ can
differ in truth value). However, there is no analogue of pure s-learning (s-learning
without h-learning), since any change in states’ evidence-relative comparative
normality must be occasioned by a change in one’s evidence.

While we aren’t opposed in principle to building more general models that
support something like pure s-learning (say by combining the probabilistic mod-
els of §6 with a Jeffrey (1965)-style account of probability dynamics), we don’t
think that the cases discussed below require doing so. Moreover, we think that
the example which van Benthem uses to motivate s-learning – namely, that
someone smiling at the poker table might allow you to s-learn that they have
a good hand – is better modeled as learning (i.e., h-learning) that they smiled
and forming an inductive belief that they have a good hand.

4 Comparability

In this section, we will consider a style of potential counterexample to ♦− (and
hence to preservation and rational monotony) raised by Stalnaker (1994).
We think that such counterexamples, if genuine, turn on failures of compara-
bility. We are not convinced that ♦− really does fail in these cases, since we
are sympathetic to comparability for reasons explained in §6. But the cases

11Soft learning is similar to approaches to iterated belief revision in terms of revising plausi-
bility orders; see Spohn (1988), Boutilier (1996) and Darwiche and Pearl (1997). Compare also
Leitgeb and Segerberg (2007), who give models similar to ours in which worlds are modeled
as pairs of a state and a plausibility order.
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are still instructive, in part because they suggest a natural minimal departure
from the AGM orthodoxy.

The example is as follows:12

Three Friends
Anna knows that Giuseppe, Georges, and Erik are all mono-lingual.
On Monday, based on relatively little information, she believes that
Giuseppe only speaks Italian, while Georges and Erik only speak
French. On Tuesday, she discovers that Giuseppe and Georges actu-
ally speak the same language (perhaps by seeing them talk to each
other), without discovering what that language is. On Wednesday,
she discovers that Giuseppe and Erik also speak the same language,
again without discovering what that language is.

It’s natural to think that, on Tuesday, Anna should take no view on whether
Giuseppe and Georges both speak only Italian or only French, but should still
believe that Erik speaks only French. It’s also natural to think that, on Wednes-
day, Anna should give up her belief that Erik speaks only French: at this point,
she should no longer take a view on which langugage the three share. If both of
these thoughts are correct, Three Friends is a counterexample to ♦−. For it is
consistent with what Anna believes on Tuesday that Giuseppe and Erik speak
the same language (in particular, that they both speak French); yet when she
discovers on Wednesday that they do speak the same language, she gives up her
belief that Erik speaks French.

Building on Lin (2019), we can use the following normality structure to
accommodate this purported failure of ♦−:

• S contains eight states. Each state is a triple xyz where x, y, z ∈ {i, f}
respectively indicate Giuseppe, Georges, and Erik’s languages.

• Anna’s initial evidence is E1 = S; her evidence after learning that Giuseppe
and George are co-lingual is E2 = {iii, iif, ffi, fff}, and her evidence after
learning that they’re all co-lingual is E3 = {iii, fff}.

• We impose statism and collapse, so the model is fully determined by
specifying � as a relation on states. s � s′ if and only if the people whose
language Anna is initially mistaken about in s are a subset of the people
whose language she is initially mistaken about in s′.

Anne initially believes that Giuseppe speaks Italian and Georges and Erik
both speak French: B(E1) = {iff}. But our interest is in what happens when
Anne learns that Giuseppe and Erik are co-lingual – i.e., when she learns p =
{iii, ifi, fif, fff}, so that her evidence changes from E2 to E3. Since B(E2) =
{iif, fff} and B(E3) = {iii, fff}, ♦− fails, as advertised: p ∩ B(E2) 6= ∅ and
E3 = E2 ∩ p, but B(E3) 6⊆ B(E2).

12We have adapted the example slightly, to make it more plausible that the described
learning episodes result in the relevant propositions becoming part of ones evidence.
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We’d like to make two points about this example. The first is that, although
Stalnaker’s judgments about the case are not unnatural, they are not unques-
tionable either. The failure of ♦− turns on the fact that, although iif Ï iii, both
are incomparable with fff. But it isn’t hard to imagine a basis for comparison: for
example, fff, like iif, involves Anne being initially mistaken about only one per-
son while iii involves her being initially mistaken about both Georges and Erik.
This suggests an alternative model, which satisfies comparability and statism
and makes iif and fff both equally normal and sufficiently more normal than iii.
Such a model would validate ♦−, with B(E3) = {fff} ⊆ B(E2) = {iii, fff}:
Anne would always believe that she initially made as few mistakes as possible
given her evidence. So we don’t think cases like Three Friends pose a decisive
counterexample to ♦− or, more generally, to AGM.13

For the second point, which we owe to Ginger Schultheis, consider what
would happen according to the above comparability-violating model if, after
learning that Giuseppe and Georges are co-lingual, Anne had learned instead
that Giuseppe and Erik are not co-lingual. Let E4 = {iif, ffi}. Then E4 = E2 ∩
(S\p), and B(E4) = {iif, ffi}. So while evidence E2 supports believing {iif, fff},
this support would be destroyed both by discovering p and by discovering not-
p. In other words, although at the intermediate stage Anne believes that Erik
speaks French, she would give up this belief if she were either to learn that
Giuseppe and Erik are co-lingual or to learn that they are not co-lingual.

This is a surprising prediction: if Anne would give up a belief whatever she
might learn about whether Giuseppe and Erik are co-lingual, what business does
she have holding that belief now? We can formulate the claim that this cannot
happen as follows:14

Π− If you believe q, then for any finite set of mutually exclusive and jointly
exhaustive discoverable events, it is possible to discover one of them while
continuing to believe q.

If Π ⊆ E is a finite partition of E, then B(E ∩ p) ⊆ B(E) for some
p ∈ Π.

Although our main focus in this paper is on the five principles from §1, more
complex principles like Π− are also useful in exploring different models of belief
revision, and we will return to them below.

5 Against ♦−
This section considers a different style of counterexample to ♦−. Drawing on
Goodman and Salow (2018, 2023), we describe two such counterexamples, and
review how they can be modeled using normality structures violating collapse

13This is not the end of the story: Goodman and Salow (2023, §5) argue that anti-skepticial
considerations about knowledge support a powerful, though not conclusive, argument again
comparability.

14Pearson (ms) discusses a version of this principle under the label ‘Anticipation’.
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while satisfying both statism and comparability. We will then show that
statism and comparability lead to a strictly stronger theory of belief revision
than statism and collapse, as the former but not the latter validates Π−.

The idea motivating collapse-failures is illustrated by Bias Detection.
Inductive support is a fine-grained affair, and sufficient evidence for believing
an inductive hypothesis often accumulates gradually, in fits and starts. Suppose
you have just enough evidence for an inductive belief that the bag is red-biased.
For all you believe, the next draw will be a black ball, since even the red-biased
bag has 40% black balls. So your beliefs leave open that your incoming evidence
will slightly weaken your inductive grounds for believing that the bag is red-
biased. Since your inductive support for believing that the bag is red-biased is
only barely sufficient, such a weakening will require giving up that belief.

In this section we will focus on two much discussed cases from the literature
for which particularly simple normality structures have already been defended.
We will return to Bias Detection later, since it raises additional complications
that go beyond what is required to argue against ♦−.

Here is the first case, from Dorr et al. (2014):

Flipping for Heads
A coin flipper will flip a fair coin until it lands heads.

We think that, for some number n > 1, you should start off believing that
the coin will land heads after at most n flips, and that this is all you believe
about the outcome of the experiment.15 If you then see the coin land tails on
the first flip, you should now think only that the coin will land heads after at
most n more flips – i.e. after n + 1 total flips. More generally, until the coin
lands heads, your beliefs about how many more flips there will be until it lands
heads should remain unchanged. Goodman and Salow (2018) in effect offer the
following normality structure to vindicate these claims. Since statism holds in
their model, we can specify comparative normality as a relation between states.

S = {s1, s2, . . .}

E = {Ei = {si, si+1, si+2, . . . } : i ≥ 1}

si � sj iff i ≤ j.

si Ï sj iff i+ n ≤ j, for a suitable constant n > 1.

In state si the coin lands heads on the ith flip, and Ei is your evidence after
having observed it land tails i− 1 times. As advertised, if your evidence is that
the coin is flipped at least i times, then what you believe is that it will be
flipped at least i times and fewer than i + n times: B(Ei) = {si, . . . , si+n−1}.
Now suppose you see the coin lands tails on the first flip. ♦− is then violated.

15This claim is defended by Levi (1996), Hall (1999), Dorr et al. (2014), and Kelly and Lin
(2021); for criticism, see Smith (2018a). Hall (1999), Goodman and Salow (2018), and Kelly
and Lin (2021) also note that this poses a challenge for ♦−.
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Your new evidence is consistent with your prior beliefs, but your new beliefs
don’t entail your prior beliefs: B(E1) ∩ E2 6= ∅, but B(E1 ∩ E2) 6⊆ B(E1).

Here is the second case, adapted from Goodman and Salow (2023):

Bjorn
Wandering through IKEA, having just gorged himself on Swedish
meatballs, Bjorn wonders how much he weighs. Luckily, he’s in the
bathroom section, where two inexpensive digital scales are on dis-
play. He weighs himself on both of them.

Here is a simple model of the dynamics of Bjorn’s beliefs. Suppose that, prior to
weighing himself, he has so little idea how much he weighs that his subsequent
beliefs are effectively swamped by the scale’s readings. In particular, assume
that, for some positive c, what Bjorn will believe upon seeing the first scale read
y is that he weighs within c pounds of y. Upon then seeing the second scale read
z, what he believes is that he weighs within c√

2
(≈ .71c) pounds of the average

of y and z. That his beliefs are centered on the average of the measurements,
and become more precise, is hopefully intuitive; the factor of 1√

2
is justified by

the fact that the standard deviation of the average of n independent samples
from a distribution decreases as the squareroot of the number of samples.

These belief dynamics are inconsistent with ♦−. After stepping on the first
scale, Bjorn believes that he weighs between y − c and y + c pounds. Since it
is consistent with his beliefs that he weighs y + c pounds, it should also be
consistent with his beliefs that the second scale will read y+ c pounds. Suppose
that happened: Bjorn would then believe that he weighed between 2y+c

2 − c√
2

and 2y+c
2 + c√

2
pounds, giving up his belief that he weighs at most y+ c pounds

(since c < c
2 + c√

2
) upon learning something consistent with his prior beliefs.

Goodman and Salow (2023, §6) give the following model of Bjorn, which
delivers these results.16 The model obeys statism, allowing us to again specify
comparative normality as a relation between states:

S = {〈x, y, z〉 : x, y, z ∈ R}

E = {S} ∪ {Ey : y ∈ R} ∪ {Ey,z : y, z ∈ R}

s � s′ iff δ(s) ≤ δ(s′)

s Ï s′ iff δ(s) + c2 < δ(s′)

where

Ey = {〈x′, y′, z′〉 ∈ S : y′ = y}

Ey,z = {〈x′, y′, z′〉 ∈ S : y′ = y and z′ = z}

δ(〈x, y, z〉) = (x− y)2 + (x− z)2.

16They also show how the model can be derived, given natural assumptions, using the
probabilistic account of comparative normality discussed below.
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Here 〈x, y, z〉 represents the state where Bjorn’s weight is x, the first scale
reads y, and the second scale reads z. Ey is Bjorn’s evidence after seeing the
first scale read y, and Ey,z is his evidence after then seeing the second read z.

This model vindicates the belief dynamics described above. Before weighing
himself, Bjorn has no beliefs about how much he weighs; after weighing himself
once and seeing a reading of y pounds, he believes that his weight in pounds is in
the interval [y− c, y+ c]; after weighing himself again and seeing a reading of z,
he believes that his weight in pounds lies in the interval [y+z

2 −
c√
2
, y+z

2 + c√
2
].17

This leads to failures of ♦− whenever the difference between y and z is great
enough that the second interval isn’t contained in the first, but not so great that
Bjorn expected not to see such an extreme disparity. This happens whenever
|y − z| ∈ (2c−

√
2c,
√

2c] ≈ (.59c, 1.41c].18

Although rejecting either of comparability and collapse can lead to
failures of ♦−, the two principles have different implications for the logic of
belief revision. For example, we saw at the end of the last section that Π− does
not hold on the class of normality structures satisfying collapse and statism.
By contrast, we have the following result:

Proposition 3. Π− holds on the class of normality structures satisfying com-
parability and statism.

In fact, given statism, comparability yields a strictly stronger theory of belief
revision than collapse does:

Proposition 4. Any principle that fails in a normality structure satisfying
statism also fails in a normality structure satisfying statism and collapse.

The distinction between cases like Three Friends, in which any failures of
♦− would be due to failures of comparability, and Flipping for Heads and
Bjorn, in which failures of ♦− are attributable instead to failures of collapse,
requires theorizing not merely in terms of the relation Ï of one situation being
sufficiently more normal than another but also the underlying relation �, of one
situation being at least as normal as another. Since � constrains Ï, principles
formulated in terms of it, like comparability (and, as we will see below, weak
statism), can have interesting consequences for the logic of belief revision, even
though B is defined only in terms of Ï.

17B(S) = {s′ ∈ S : δ(s′) ≤ c2}; B(Ey) = {s′ ∈ Ey : δ(s′) ≤ c2}; B(Ey,z) = {s′ ∈ Ey,z :

δ(s′) ≤ (y−z)2

2
+c2}. More generally, if Bjorn were to step on n scales and we were to represent

states by n + 1-tuples 〈x, y1, . . . , yn〉, then for 1 ≤ i ≤ n, B(Ey1,...,yi ) = {s′ ∈ Ey1,...,yi :

δ(s′) ≤ TSS{y1, . . . , yi}+ c2}, where TSS(X) = Σx∈X(x−X)2 and X = ΣX
|X| .

18Given natural assumptions, this will be more than a third of the time. Suppose that errors
in the scales are independent and are the result of sampling from a Gaussian distribution with
standard deviation σ. Then the probability distribution over values of y − z is characterized
by a Gaussian distribution with standard deviation σ′ =

√
2σ. Suppose c ≈ 1.96σ (chosen so

that, for all E ∈ E, Bjorn’s beliefs when his evidence is E have ∼.95 probability given E of
being true). So (2c−

√
2c,
√

2c] ≈ (.81σ′, 1.96σ′]. The probability that |y−z| is in this interval
is ∼.37.

16



6 Normality and Probability

A natural idea in accounting for failures of collapse is to somehow appeal to
probability thresholds. This is because failures of collapse mean that there
are differences in normality that aren’t sufficient to warrant inductive belief, and
a familiar idea is that increasing probability can eventually make propositions
worthy of inductive belief but only if the probability is sufficiently high.

The remainder of the paper develops this basic idea. This section explains
how a threshold for what counts as sufficiently probable can be used to generate
normality structures, including the models of Flipping for Heads and Bjorn
from the last section. However, we will see in §7 that those examples were in
a way misleading, since the probabilistic account, even in its most constrained
form, doesn’t generally vindicate statism. We then motivate some generaliza-
tions of the account in §§8 and 10, and argue that it compares favorably to
related probabilistic accounts of belief from the literature in §9.

Consider the following class of structures:19

Definition 6.1. A simple probability structure is a tuple 〈S, E ,W, Pr, t〉 where:

1. S, E ,W satisfy clauses 1-3 of the definition of normality structures

2. Pr (the prior) is a probability distribution over S such that Pr(E) > 0
for all E ∈ E

3. t ∈ (0, 1] (the threshold)

We can use simple probability structures to generate normality structures.
Among situations with the same evidence, one is at least as normal as another
just in case its component state is at least as probable. (For convenience, we
have situations be incomparable in normality whenever they involve different
evidence.) To determine when differences in normality constitute sufficient dif-
ferences, we compare the probabilities of things being at least as abnormal as
they are in the relevant situations. Informally, a difference in normality is suf-
ficient if and only if there is sufficiently high probability, conditional on things
being at least as abnormal as they are in the more normal situation, that things
are still more normal than they are in the less normal situation. This definition
is designed to ensure that anything one believes has sufficiently high probability
given one’s evidence.20

19The structures are a simplification of the more general probability structures introduced
in Goodman and Salow (2021) and explored in §8 below.

20This account of when a difference in normality becomes sufficient can also be combined
with non-probabilistic accounts of normality (i.e. of �), like the ones discussed by Smith
(2016) and Beddor and Pavese (2020). As long as � obeys comparability, the account of Ï

will still have the desirable consequence that your beliefs must always have above-threshold
probability. More generally, the results below depend only on � obeying comparability and,
where relevant, weak statism.
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Definition 6.2. 〈S, E ,W,�,Ï〉 is determined by a simple probability structure
〈S, E ,W, Pr, t〉 if and only if:

• s �E s′ iff Pr({s}|E) ≥ Pr({s′}|E);

• s ÏE s′ iff Pr({s′′ : s′ 6�E s′′}|{s′′ : s �E s′′}) ≥ t;

• situations involving different evidence are not related by � or Ï.

Proposition 5. If 〈S, E ,W,�,Ï〉 is determined by 〈S, E ,W, Pr, t〉, then it is a
normality structure, and B(E) is always the minimal subset of E that

1. includes the most probable members of E,

2. includes all members of E at least as probable as any it contains, and

3. has probability at least t conditional on E.

More exactly, B(E) =
{
s ∈ E : PrE

({
s′ : PrE({s′}) > PrE({s})

})
< t
}

.

This direct characterization of belief in terms of probabilities is equivalent to
the one proposed by Cantwell and Rott (2019) and investigated further by Wang
(2022). It can also be straightforwardly generalized to continuous distributions
and probability density functions (needed to handle examples like Bjorn); see
Goodman and Salow (2021, appendix B). So generalized, the analogue of Propo-
sition 5 is then that what one believes is given by the high posterior density
region for a given threshold, which is the standard way in Bayesian statistics of
summarizing probability distributions using regions; see Kruschke (2014). This
correspondence is one reason why we think the above is a more attractive pic-
ture of how belief is related to probability than the Lockean picture mentioned
earlier and discussed further below.

We can also reformulate this proposal in terms of degrees of normality. Let a
situation’s degree of normality be the probability, given its evidence, that things
are at least as abnormal as they are in that situation (so that, for example, a
situation has degree of normality 1 whenever it is at least as normal as every
other situation with the same evidence). In normality structures determined by
simple probability structures, we can directly characterize � and Ï in terms of
degrees of normality:

Proposition 6. If 〈S, E ,W,�,Ï〉 is determined by 〈S, E ,W, Pr, t〉, then

1. s �E s′ iff d(〈s, E〉) ≥ d(〈s′, E〉); and

2. s ÏE s′ iff 1− d(〈s′,E〉)
d(〈s,E〉) ≥ t.

where d(〈s, E〉) = Pr({s′ : s �E s′}|E).

Remark 6.1. It is possible to generate normality structures from simple prob-
ability structures that agree with Definition 6.2 on �E and ÏE but in which
all situations are comparable, even situations with different evidence: simply let
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w � v iff d(w) ≥ d(v), and w Ï v iff 1− d(v)
d(w) ≥ t.21 These relations satisfy the

definition of a normality structure.22

Simple probability structures can also be used to motivate the normality
structures proposed in §5. In particular, the structure used to model Flipping
for Heads is determined by the obvious simple probability structure for the case
(in which each state has a probability equal to its initial chance of obtaining).

Normality structures generated in this way satisfy many of the conditions
we have discussed, and determine a fairly strong logic of belief revision:

Proposition 7. Every normality structure determined by a simple probability
structure satisfies comparability and weak statism, so ♦R and �R are
valid. �− and Π− are also valid.

But not all normality structures generated in this way are as well behaved as
the models of Flipping for Heads and Bjorn discussed above:

Proposition 8. statism and �+ can both fail in normality structures deter-
mined by simple probability structures.

In the next section we argue that such failures of statism are an advantage
rather than a deficiency of probabilistically generated normality structures.

7 Against �+

Here, in outline, is our case against statism: there are cases where ♦− fails and
the best explanation of these failures is that collapse fails too; the best account
of how collapse fails in these cases is that comparative normality aligns with
underlying probabilistic structure in the way described above; this probabilistic
account of comparative normality will not in general deliver statism. In this
section we make this argument more concrete, by showing how statism fails
in Flipping for Heads if we expand the possible bodies of evidence. These
failures of statism also lead to failures of �+; we defend this prediction.

We begin with an informal statement of the argument. Suppose that instead
of watching the coin, you ask someone after the fact whether the coin landed
heads in the first n flips (which is the strongest thing you initially believed),
and you discover that it did. Although you believed this already, it was not
previously entailed by your evidence, whereas it now is. Since your evidence
has been strengthened, you may now be in a position to form new inductive
beliefs. In particular, you may now believe that the coin landed heads in the
first n−1 flips. The underlying probabilistic fact is that this proposition can have
above-threshold probability given your stronger evidence despite having below-
threshold probability given your original evidence. When comparative normality

21Dorr et al. (2023) argue that all gradable expressions in natural language obey this strong
form of comparability.

22Goodman and Salow (2021, note 8) claim that this is impossible, apparently assuming
that a situation’s degree of normality would have to be its probability considered in isolation.
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is then analyzed in terms of simple probability structures, this leads to a failure
of statism: although, relative to your original evidence, the coin landing heads
on the nth flip isn’t sufficiently less normal than it landing heads on the first
flip, it is sufficiently less normal relative to your new, stronger evidence.

Here is the argument more formally. We modify the relevant probability
structure by adding E′ = {s1, . . . , sn} to E . Now suppose t = 1 − .5n−1 + ε.
Then B(S) = E′ and B(E′) = {s1, . . . , sn−1}. So �+ fails: B(S) 6⊆ B(B(S)).
This is possible because statism fails too: s1 6ÏS sn, but s1 ÏE′ sn.23

This example suggests that statism is the exception rather than the rule.
It holds in our earlier probablistically derivable models of Flipping for Heads
and Bjorn only because the symmetries of the probability distributions involved
and the circumscribed possible bodies of evidence conspire in just the right way.
On reflection, we think that failures of �+ should be expected on any framework
which, like ours, distinguishes one’s evidence from one’s beliefs. This is because
learning what one previously believed inductively is a way of strengthening
one’s evidence, so we should expect it to sometimes yield new beliefs. And this
requires failures of statism.24

Since the account predicts failures of �+, it also predicts failures of principles
which entail it. Consider the widely endorsed idea that an inductive hypotheses
q is only reasonable to believe in response to learning p if, before that discovery,
it was reasonable to believe the corresponding material conditional p ⊃ q:25

frontloading
If you would believe q after learning p, then you already believe p ⊃ q.

B(E) ∩ p ⊆ B(E ∩ p).

This principle has considerable intuitive appeal, especially for those in a proba-
bilistic frame of mind. For example, White (2006) influentially emphasizes that
the conditional probability of a material conditional given its antecedent is typ-
ically lower and never greater than its unconditional probability; it seems sur-
prising, then, that learning its antecedent could make the conditional reasonable
to believe when it wasn’t beforehand.

Despite its intuitive appeal, we are committed to rejecting frontloading,
since it entails �+. Again, we think that on reflection this is a natural result.
Consider how frontloading fails in our model of Flipping for Heads: you
come to believe the material conditional the coin is flipped at most n times ⊃
the coin is flipped at most n−1 times as a result of learning its antecedent. This
conditional is false only in state sn. While it is true that the probability that sn

23This argument works for most t ∈ (1− .5n−1, 1− .5n], but not for t very close to 1− .5n.
24One complication: it might be argued that any purported failure of �+ (or �−) can be

re-described in a more fine-grained way where the principle vacuously holds, since usually
what we learn isn’t something that we anticipated in complete detail (e.g., where on the table
a coin lands). Note that counterexamples to principles like frontloading and Π+ (discussed
below) are unaffected by such fine-grained re-description.

25The name is from Chalmers (2012), who defends a closely related principle about knowl-
edge; Hawthorne (2002) and Bacon (2014) also defend analogous principles about knowledge,
which Goodman and Salow (2023) discuss under the heading inductive anti-dogmatism.
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obtains is higher after your discovery, so too is the probability that things are
more normal than they are in sn. This is why, on our view, you should come to
believe that sn does not obtain.26

frontloading also entails the analogue of Π− for belief acquisition:27

Π+ If you don’t believe q, then for any finite set of mutually exclusive and
jointly exhaustive discoverable events, it is possible to discover one of
them without coming to believe q.

If Π ⊆ E is a finite partition of E, then B(E) ⊆
⋃

p∈Π

B(E ∩ p).

This principle says that if you would believe q after learning the answer to a given
question regardless of what the answer was, then you should already believe q.
It too fails in Flipping for Heads. Having added E′ = {s1, . . . , sn} to E , we
should do the same for S\E′ = {sn+1, . . . }, since you could have been informed
that the coin was flipped more than n times. These two mutually exclusive and
jointly exhaustive bodies of evidence both support believing that sn does not
obtain (the former inductively, and the latter deductively); but trivial evidence
S does not support this belief, in violation of Π+.

Summing up: normality structures determined by simple probability struc-
tures are more friendly to orthodox principles of belief preservation than they
are to structurally parallel orthodox principles of belief acquisition. Although
Π+ and even �+ can fail in such structures, �− and even Π− hold. This is no-
table because all of these principles can fail in normality structures that merely
satisfy comparability and weak statism.

8 Question sensitivity, and how ♦R can fail

There is a problem with normality structures determined by simple probability
structures. On the one hand, we need to model states in a way that is sufficiently
fine-grained to capture all relevant features of an agent’s evidence. On the other
hand, there are certain inductive beliefs that we think ordinary agents have.
The problem is that these two requirements can conflict with each other.

26By the same token, these models allow for failures of ♦− where what you learn raises the
probability of the belief you lose. Imagine rolling a 100-sided die until it lands 1. As in our
model of Flipping for Heads, we identify states with the number of rolls that this takes.
For t = .9, B(S) = {1, . . . , 230} (since 1 − .99229 < .9 < 1 − .99229). Subsequently learning
{230, 231}∪{232, 234, 236, . . . } would destroy your belief in {1, . . . , 230}∪{232, 234, 236, . . . }
despite increasing its probability from ≈.95 to ≈.99.

27Conversely, Π+ entails frontloading whenever E is partition closed, in the sense that, if
E,E′ ∈ E and E′ ⊆ E, then E′ ∈ Π for some Π ⊆ E that is a finite partition of E. Partition
closure is a natural constraint on normality structures (and one that is consistent with our
argument in appendix A against the closure of E under non-empty subsets).
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Here is an example that illustrates the tension:

Computer Number
You have very strong evidence that your computer is working: the
probability that it will turn on is .99999 given your evidence. If it
turns on it will display a random ten-digit number.

If the computer turns on, you’ll discover what number it displays. So states
should be fine-grained enough to take a stand on what number is displayed. It
follows that states in which the computer turns on cannot have probability above
10−10. But for all we have said there is only one state in which the computer
doesn’t turn on and the monitor remains blank, and it has probability 10−5.
This would then be the most normal state given your evidence in the normality
structure determined by such a probability structure. This yields the intuitively
incorrect prediction that you don’t believe that the computer will turn on.28

The moral of such cases is that, in determining comparative normality, we
need to be able to abstract away from many of states’ fine details. Following
Goodman and Salow (2021), we propose to implement this idea by having com-
parative normality be determined not by the probabilities of particular states,
but by the probabilities of equivalence classes of states. This equivalence relation
corresponds to a contextually determined question: two states are equivalent just
in case they agree on the answer to the question. More precisely:29

Definition 8.1. A probability structure is a tuple 〈S, E ,W,Q, Pr, t〉 where Q
(the question) is a partition of S, and S, E ,W, Pr, t are as in Definition 6.2.

Probability structures determine normality structures in exactly the same
way that simple probability structures do, except with the probability of [s]Q in
place of the probability of s in the definition of �E , where [s]Q is the cell of Q
containing s. More precisely, we adopt the following analogue of Definition 6.2
which yields an appropriate analogue of Proposition 5:

Definition 8.2. 〈S, E ,W,�,Ï〉 is determined by the probability structure
〈S, E , Q,W,Pr, t〉 if and only if:

• s �E s′ iff Pr([s]Q|E) ≥ Pr([s′]Q|E);

• ÏE is as in Definition 6.2;

• situations involving different evidence are not related by � or Ï.

28Compare Hacking (1967), who raises a similar case as a challenge for Levi (1967).
29This definition is from Goodman and Salow (2021), except for the requirement that t > 0,

which they fail to notice is needed to ensure that Ï is asymmetric; Hong (2023) independently
proposes the same account. (We could simulate t = 0 by existentially quantifying over all
positive thresholds in the clause for Ï.)
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Proposition 9. If 〈S, E ,W,�,Ï〉 is determined by 〈S, E ,W,Q, Pr, t〉, then it
is a normality structure in which B(E) is always the minimal subset of E that

1. overlaps the members of Q most probable given E,

2. overlaps all members of Q at least as probable, given E, as any it overlaps,

3. contains every state in E that agrees on the answer to Q with any other
state it contains, and

4. has probability at least t conditional on E.

More exactly, B(E) =
{
s ∈ E : PrE

({
s′ : PrE([s′]Q) > PrE([s]Q)

})
< t
}

.

Strictly speaking, simple probability structures are not probability struc-
tures. But, in a slight abuse of notation, we will speak as if they are, since
adding the question Q = {{s} : s ∈ S} to a simple probability structure yields
a probability structure that determines the same normality structure.

The most important way in which probability structures generalize simple
probability structures is that the normality structures they determine need not
satisfy weak statism. This is because the comparative probability of [s]Q and
[s′]Q can change as a result of getting new evidence compatible with both s
and s′. For this reason, it will be useful to isolate the following principle, which
characterizes the class of probability structures in which this never happens:

orthogonality:
Pr([s]Q)
Pr([s′]Q) =

Pr([s]Q|E)
Pr([s′]Q|E) for s, s′ ∈ E ∈ E s.t. Pr([s′]Q) > 0

A special case of probability structures satisfying this condition are congruent
ones, in which every member of E is a union of some set of cells of Q (which
trivially includes simple probability structures). But even in cases where the
question we care about is more coarse grained than the discoveries we can make,
orthogonality is still often a natural idealization. For example, we could
fine-grain our model of Bjorn to allow Bjorn to discover the font of the digital
scales’ display; this requires fine-graining states, but in a way that is plausibly
orthogonal to the question what does Bjorn weigh and what will the scales read.
This also illustrates the fact that, when orthogonality holds and we are only
interested in beliefs about events that are unions of cells of Q, it is harmless
to use simple probability structures, where Q is eliminated as an additional
parameter and instead simply identified with S (with the obvious adjustments).

If we restrict our attention to probability structures that satisfy orthogo-
nality, we have the following analogue of Proposition 7:

Proposition 10. Normality structures determined by probability structures that
satisfy orthogonality satisfy weak statism, so ♦R and �R are valid. �−
and Π− are also valid.

However, when we consider the full range of probability structures, more princi-
ples can fail, although the resulting class of normality structures still validates
some non-trivial principles:
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Proposition 11. Every normality structure determined by a probability struc-
ture satisfies comparability and validates �− and �R.

Proposition 12. weak statism, ♦R, and Π− can all fail in normality struc-
tures determined by probability structures.

Failures of ♦R are easily illustrated by our opening example of Bias Detec-
tion where Q is the polar (i.e. two-cell) question is the bag red-biased. For any
t < 1, there will be a pair of sequences of red and black observations, the second
of which is a continuation of the first, such that the probability that the bag is
red-biased is above t conditional on the first sequence and the probability that
the bag is unbiased is above t conditional on the longer second sequence. Since,
relative to this question, all situations compatible with your evidence in which
the bag is biased are equally normal, it will be compatible with what you be-
lieve after observing the first sequence that you are going to observe the longer
sequence. So that subsequent discovery is compatible with your prior beliefs,
and occasions a reversal in your beliefs about the bag.

This example makes salient an important fact about probability structures:
what they predict is highly sensitive to the choice of Q. An urgent question in
assessing the account is then how to think about the status of Q. Addressing
this issue head on is something we must defer to future work. But the present
project does much to address it indirectly, by seeing what predictions about
belief correspond to different choices of Q.30 Together with judgments about
what people believe (or about what ‘belief’-sentences are true in what contexts,
if the relevant question Q can vary depending on the context – which is our
preferred view) these predictions yield nontrivial constraints on any account of
the questions relative to which belief is sensitive.31 We should also note that the
idea that belief is question sensitive is not an idea unique to us; it is a feature of
most of the alternative probabilistic theories discussed in the next section, and
has other precedents in the philosophy of mind and language.32

Moreover, we are not suggesting that the question is the bag red-biased is the
only natural question when thinking about Bias Detection. This is because
more fine-grained questions are needed to allow the agent to have inductive
beliefs about their future observations; for example, that their first twenty draws
won’t all be black. But we don’t think that there are any very natural questions
that respect orthogonality in this case. In particular, maximally fine-grained
questions are unattractive. For when your evidence entails how many draws you
will make from the bag, a maximally fine-grained question threatens to make
all states in which the bag is unbiased equally normal, preventing any nontrivial
beliefs about what red-black sequence will be observed.33

30For a worked example, see Goodman and Salow (2021, §5).
31On one version of this view, failures of ♦R might be ‘elusive’, in the sense of Lewis (1996):

focusing on what the agent learns might tend to shift the context to one in which their
discovery doesn’t violate ♦R, by shifting the question to one congruent with their discovery.

32See, e.g., Yalcin (2018), Hoek (forthcoming), Holgúın (2022).
33While those with skeptical leanings about induction in these cases might embrace this

conclusion, fine-graining is not a general recipe for skepticism, and often predicts counterin-
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To illustrate how failures of orthogonality can generate failures of Π−,
consider the following case:

Celebrity Hike
101 celebrities go on a hike in Runyon Canyon. A paparazzo shadow-
ing them notices a hiking pole on the trail. On inspection, he notices
some fingerprints. He knows that Michael Jackson and Beyoncé were
on the hike, and that he always hikes wearing one glove on his right
hand and she always hikes wearing one glove on her left hand. Af-
ter inspecting the pole further, the paparazzo discovers whether the
fingerprints were made by a left or right hand.

We can model the case using 200 equally probable states compatible with the
paparazzo’s evidence after he notices the fingerprints: one for each hand that
might have made them (Michael’s left hand, Beyoncé’s right hand, and either
hand of any of the other celebrities on the hike). Let Q be who dropped the pole,
p be that the pole was carried in a left hand, and q be that someone other than
Michael or Beyoncé dropped the pole. Whether the paparazzo discovers p or its
negation, he won’t then believe q, since all answers to Q will be equally likely
on his evidence, and he will have no inductive beliefs. But for t ≤ .99, he will
still believe q beforehand, generating a counterexample to Π−.

9 Other probabilistic approaches

In this section (which can be skipped without loss of continuity) we contrast
the account developed so far with other probabilistic accounts of belief dynam-
ics in the literature. We start with the well-known Lockean theory mentioned
at the outset, which cannot be accommodated within the normality framework
since it recommends having inconsistent beliefs that are not closed under en-
tailment. We then discuss the theories of Leitgeb (2017), Lin and Kelly (2012),
and Levi (1967), and explain how they can be viewed as alternative proposals
for generating normality structures from probability structures.

tuitive patterns of belief. For example, if our evidence doesn’t settle how many times you will
draw from the bag, then it tends to predict that our inductive beliefs to the effect that you
won’t make more than a certain number of draws are much stronger (as measured by their
evidential probability) than our inductive beliefs to the effect that you won’t make fewer than
a certain number of draws – since the more draws you make the more fine-grained (and hence
less probable) the states involved must be in order to take a stand on one’s future discoveries.

These contrasting predictions about belief, depending on whether your evidence settles the
number of draws, is reminiscent of the sensitivity of classical significance tests to stopping rules.
Partition-sensitivity also arises in classical statistics in terms of the choice of test statistics;
see Kotzen (2022) for a helpful survey. In general, partition-sensitivity is hard to avoid in any
theory that aims to generate a qualitative summary of a probability distribution.
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9.1 Lockeanism

Let us start by distinguishing two principles:

threshold: You believe that p only if the probability of p, given your
evidence, is at least t (for some suitable t).

lockeanism: You believe that p if and only if the probability of p, given
your evidence, is at least t (for some suitable t).

The view we have developed embraces threshold but rejects lockeanism:
high probability is necessary but not sufficient for belief.

The synchronic predictions of lockeanism are sensitive to the choice of t.
As is well-known, if t < 1, the view allows you to believe two things without
believing their conjunction, preventing your beliefs from being characterized
by a single set of states compatible with what you believe. Even if t = 1, one’s
beliefs can still be inconsistent. For example, the probability on Bjorn’s evidence
that he weighs exactly x pounds is arguably zero for each x ∈ R. So Lockeans
cannot model belief as truth in all doxastically accessible possibilities.

In exploring the dynamic predictions of lockeanism, we will assume that
probabilities evolve by conditionalization on what one learns (and set aside cases
where what one learns had probability 0). If t = 1, lockeanism then vindicates
all the principles we have discussed, including principles such as ♦−, which we
have argued against at length. If t < 1, things are more interesting.34

Proposition 13. lockeanism validates Π−, Π+, and frontloading; and

�R holds whenever t >
√

5−1
2 ≈ .62.

Proposition 14. ♦−, ♦R, �+, �− can all fail given lockeanism for t < 1.

The belief revision theory of lockeanism treats principles of belief preservation
and principles of belief acquisition symmetrically: Π− and Π+ stand together,
while �− and �+ fall together. As noted at the end of §7 this constitutes a
difference from normality structures derived from simple probability structures,
which are friendlier to − principles than to + principles.

We reject lockeanism, but not because of Propositions 13 and 14. Our (not
at all original) concern with lockeanism is rather that its static predictions are
implausible. According to the view, Bjorn should believe that he does not weigh
x pounds for every x, no matter what he sees on his scales; when he sees a single
measurement of y, he should (for suitably small d) believe that he weighs either
less than y − d or more than y + d. Similarly, in a version of Bias Detection
where you are likely to draw from the bag a large number of times, it says you
should believe of every possible outcome that it will not obtain. In Flipping
for Heads, lockeanism implausibly says that you should believe that the coin
will be flipped at most n times and believe that it won’t be flipped exactly n

34Hawthorne (1996) and Shear and Fitelson (2019) systematically study nonmonotonic con-
sequence and belief revision, respectively, in a Lockean framework; Appendices D.1-D.2 explain
how to translate from these frameworks into ours.
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times, but not believe that it will be flipped at most n− 1 times. lockeanism
also severs the link between rational belief and potential knowledge, discussed
in §3.1: the most normal possibilities compatible with one’s evidence cannot be
known not to obtain, but they may have a low enough probability individually
that lockeanism says to believe that they don’t obtain.

The main advantage of lockeanism is that, by denying that we believe the
conjunction of everything we believe, it can reconcile threshold with there
being many propositions, about independent questions, that we believe and
whose probability is closer to the threshold t than it is to 1. While this can’t
happen according to our view, we can accept the parallel meta-linguistic claim
that there are many propositions, about independent questions, that we can be
truly said to “believe” and whose probability is closer to the threshold t than
it is to 1. As alluded to at the end of the last section, and discussed at greater
length in Goodman and Salow (2021, 2023, §§5), the idea is that “belief”-reports
are context-sensitive, and making such reports can change the context to one
associated with questions more favorable to the truth of those reports.

9.2 The Stability Theory

Let us now turn to the stability theory of Leitgeb (2017). It shares many com-
monalities with our use of probability structures. According to both frameworks,
an agent’s beliefs are given by a set of states whose total probability exceeds a
given threshold, and this set includes every state whose associated probability
is as least as great as that of any other state it includes. Moreover, as in proba-
bility structures, the associated probabilities are not of individual states but of
the corresponding cells of a contextually supplied partition.

The guiding idea behind the stability theory is a probabilistic analogue of
♦− that Leitgeb calls the Humean thesis; roughly, the claim that you believe
something just in case it has high probability not just unconditionally, but also
conditional on anything consistent with it. By slightly strengthening Leitgeb’s
official theory in what we take to be a natural way, we can recast it as a con-
straint on probability structures within the normality framework:35

Definition 9.1. A probability structure is stable just in case, for allQ-congruent
p and q, if Pr(p) ≥ t and Pr(p∩q) > 0, then Pr(p|q) ≥ t (where p is Q-congruent
just in case p =

⋃
X for some X ⊆ Q).

Combined with orthogonality, which is in a effect a presupposition of
Leitgeb’s framework, we have the following result:

Proposition 15. ♦− is valid on the class of normality structures determined
by stable probability structures satisfying orthogonality; but �+ is not.

35This definition strengthens Leitgeb’s theory in two ways: (1) the same threshold t figures
in both inequalities, and (2) this threshold is fixed, whereas Leitgeb allows that it can change
upon getting new evidence (see note 36).
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This result illustrates how a kind of qualitative stability of belief can be
secured by a kind of probabilistic stability. It is also notable that �+ (and
hence AGM) can fail even though ♦− holds.36

We reject stability because we reject ♦−, and along with it the informal idea
that rational belief ought to be stable in anything like the way that Leitgeb
claims that it ought to be.37

9.3 The Tracking Theory

Lin and Kelly (2012) defend what they call the ‘tracking theory’ of belief. It is so
called because it allows for belief dynamics and probability dynamics to march
in step in a sense they make precise.38 This theory can be seen as an alternative
way of determining normality structures from probability structures, with the
parameter t playing a rather different role.

Definition 9.2. 〈S, E ,W,�,Ï〉 is LK-determined by the probability structure
〈S, E , Q,W,Pr, t〉 if and only if

• �E is as in Definition 8.2;

• s ÏE s′ iff
Pr([s]Q|E)
Pr([s′]Q|E) >

1
t ;

• situations involving different evidence are not related by � or Ï.

LK-determination generates normality structures from probability structures.
The intuition behind them is that a situation is sufficiently more normal than
another if the answer to Q that is true in that situation is sufficiently more
likely than the answer to Q that is true in the other situation. In many cases –
such as Flipping for Heads (and, when generalized to probability densities,
Bjorn) – LK-determined normality structures will generate similar predictions
about belief to those of our preferred models (provided t is chosen judiciously:
low values of t for Lin and Kelly correspond to high values of t for us).

36For a formal counterexample to �+, consider a simple probability structure with S =
{a, b, c}, E = {S, {a, b}}, P r({a}) = .9, P r({b}) = .09, P r({c}) = .01, and t = .9001. This
structure is stable and (since it is simple) satisfies orthogonality. �+ fails, since B(S) =
{a, b} 6⊆ B({a, b}) = {a}.

Leitgeb (2017, chapter 4) describes his theory as compatible with AGM because, after
discovering {a, b}, one is permitted to adopt a new, stronger threshold than before. But such
threshold changes are not required by stability; moreover, such flexibility allows for failures
of ♦− just as much as it accommodates individual instances of �+.

37The synchronic constraints of Leitgeb’s official theory also have untenable skeptical impli-
cations for the kind of cases where we think that ♦− fails, such as Flipping for Heads; see
Kelly and Lin (2021). Rott (2017) and Douven and Rott (2018) discuss further cases where
the stability theory has unwelcome skeptical implications.

38Kelly and Lin (2021) develop a related theory, designed to accommodate what they call
‘symmetric Gettier cases’: cases where a and b are equally plausible and each is more plausible
than the only other possibility c in a way that licenses you to believe that one of a and b obtains;
but where the difference in plausibility between a and c individually isn’t big enough for you
to believe that a obtains after learning b does not (which would involve violations of statism).
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However, there are important structural differences between the theories.
In particular, Ï is LK-determined locally, in the sense that whether s ÏE s′

depends only on the probabilities (given E) of [s]Q and [s′]Q. As a result:

Proposition 16. Normality structures LK-determined by probability structures
satisfying orthogonality satisfy statism in addition to comparability.

So given orthogonality (which is arguably a presupposition of Lin and Kelly’s
models), the tracking theory is an instance of the kind of view mentioned in §4,
on which ♦− fails, but �+, �−, Π+, Π−, and ♦R all hold, owing to the fact
that collapse can fail but comparability and statism cannot. As discussed
earlier, this is a fairly minimal and seemingly principled departure from AGM,
which one might reasonably take to tell in favor of the theory.

The major shortcoming of the tracking theory, in our view, is that it fails
to entail threshold. Consider a case like Computer Number, in which one
state has very low probability (10−5) but every other state has extremely low
probability (< 10−10), and let Q = {{s} : s ∈ S} be the question which state
obtains. Even for extremely low values of t (> 10−5) – values whose implica-
tions in cases like Flipping for Heads are borderline skeptical – the tracking
theory recommends believing that the computer is broken, even though this has
probability 10−5 on your evidence.

Similar problems arise in Bias Detection. Suppose you have decided to
draw from the bag a large number of times. If we consider the fine-grained
question, which settles both the bias of the bag and the exact sequence of
red/black draws, the tracking theory says to believe that the bag is biased and
that almost all the draws will be red, since the most likely outcome is that the
bag is biased and all draws are red, and this is sufficiently more likely than any
outcome on which the bag is unbiased or on which it is biased but a significant
number of draws are black. But given your evidence it is extremely unlikely
that the bag is biased and almost all the draws will be red. This should not be
something you believe.

One might defend the tracking theory against these counterexamples by in-
sisting that we choose a more coarse-grained question; while the theory still fails
to entail threshold, this response at least prevents it from recommending the
extreme violations of the principle just discussed. However, moving to coarser-
grained questions requires rejecting orthogonality, which as discussed ear-
lier fails in Bias Detection for natural coarser-grained questions such as is
the bag biased and is the bag biased and what proportion of draws will be red.
And without orthogonality, the tracking theory doesn’t satisfy statism (or
weak statism) any more than our way of determining normality structures
from probability structures does, significantly weakening the resulting logic of
belief revision:

Proposition 17. �+ and �− are valid on the class of normality structures
LK-determined by probability structures; but Π+, Π−, and ♦R can all fail.

Without orthogonality, �+ is the only principle valid on the class of
normality structures LK-determined by probability structures but not on the
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class of structures determined (in the sense of Definition 8.2) by probability
structures. Moreover, the tracking theory now makes some truly bizarre pre-
dictions. Consider the following example, which Hacking (1967) introduced to
make a parallel objection to Levi (1967):

Drawing a Card
Before you are 65 decks of cards. 52 of these (one for each combina-
tion of number and suit) are trick decks, containing 52 copies of the
same card. The other 13 decks are fair. You select a deck at random,
shuffle it, and draw a card.

Let Q = which of the 53 possible deck-types did you select and t > .25. According
to the tracking theory, you initially believe that you selected a fair deck, but
after drawing a card you believe that you selected the relevant trick deck. So
we have a failure of the following principle:

ΠR If you believe q, then for any set of mutually exclusive and jointly ex-
haustive discoverable events, it is possible to discover one of them without
coming to believe not-q.

If Π ⊆ E is a partition of E, then B(E) ∩
⋃

p∈Π

B(E ∩ p) 6= ∅.

By contrast, as long as belief requires probability over a threshold greater than
.5, this principle cannot fail.39

Overall, then, we see few advantages for the tracking theory over ours. The
fact that it uses a local condition to define Ï means that it can vindicate
statism given orthogonality, yielding a strong logic of belief revision. How-
ever, this locality prevents the theory from entailing threshold, which is a
global constraint on the total probability of the set of doxastic possibilities.
Moreover, to make reasonable predictions in cases like Bias Detection, both
theories need to appeal to coarse-grained questions that conflict with orthogo-
nality. Both frameworks then predict violations of even weak statism, yield-
ing different but significantly weaker logics of belief revision in both cases.40

39Failures of ΠR are to be expected for certain notions of belief that are weaker than the
one we are operating with here. For example, your ‘best guess’ about what kind of deck you
selected is going to change no matter what card you draw. For more on this notion of belief
see Holgúın (2022); cf. the account of good guesses in Dorst and Mandelkern (2023).

40Goldstein and Hawthorne (2022) adopt a hybrid account of Ï that combines the global
probability comparisons of definition 6.2 with the local ones of definition 9.2: 〈s, E〉 Ï 〈s′, E〉
iff Pr({s′′ : s′ 6�E s′′}|{s′′ : s �E s′′}) ≥ t and

Pr([s]Q)

Pr([s′]Q)
> 1

t′ . We are ambivalent about this

account: it has some attractions (Goodman and Salow, 2021, footnote 10), but it forsakes the
natural direct characterization of belief in Proposition 9. It makes little difference to the logic
of belief revision, as versions of Propositions 10-12 continue to hold on the hybrid account.
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9.4 Levi’s theory

Levi (1967) developed an influential theory based on the idea that one’s beliefs
should offer the best trade-off between being informative and being probable.
Again, we can interpret his theory as an alternative proposal for determining
normality structures from probability structures:

Definition 9.3. 〈S, E ,W,�,Ï〉 is Levi-determined by the probability structure
〈S, E , Q,W,Pr, t〉 if and only if Q is finite and

• �E is as in Definition 8.2;

• s ÏE s′ iff Pr([s]Q|E) ≥ t
|{q∈Q:q∩E 6=∅}| > Pr([s′]Q|E);

• situations involving different evidence are not related by � or Ï.

Levi-determined structures satisfy the conditions for being normality structures.
Intuitively, here is what these structures say one should believe. Levi glosses t
as a measure of ‘boldness’. When t = 1, agents are maximally bold and their
beliefs rule out all and only the cells of Q with below-average probability. More
generally, agents’ beliefs rule out exactly the answers to Q with probability less
than t times the average probability of the answers to Q that are compatible
with their evidence. So defined, Ï is extremely coarse grained: relative to a
possible body of evidence, it corresponds to a normal/abnormal dichotomy of
states compatible with that evidence. Nevertheless, for suitable choices of Q and
t, Levi-determined normality structures make similar predictions about belief
to our preferred models in cases like Flipping for Heads.

Like our own probabilistic account, Levi’s account makes Ï sensitive to
global probabilistic features of the states compatible with one’s evidence (in his
case, how many answers to Q they are compatible with); so, as with our account,
statism can fail even assuming orthogonality. The resulting situation is
largely parallel to our Propositions 8 and 10:

Proposition 18. Normality structures Levi-determined by probability struc-
tures satisfying orthogonality satisfy comparability and weak statism,
and validate �−, Π−, and ♦R.

Proposition 19. �+ (and hence statism) can fail in such structures.

However, the effect of relaxing orthogonality is more dramatic on Levi’s
account than on ours:

Proposition 20. ♦R, �−, and ΠR can all fail in normality structures Levi-
determined by probability structures.

Our reasons for preferring our account to Levi’s – largely anticipated by
Hacking (1967) – are virtually the same as our reasons for preferring our account
to the tracking theory. Like the tracking theory, Levi’s account fails to entail
threshold; and it makes essentially the same predictions about the examples
described in the previous subsection. If we impose orthogonality, then it
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predicts believing extremely improbable events in cases like Bias Detection.
And if we reject orthogonality, the resulting belief dynamics are even less
constrained than on our account. Given the plausibility of threshold, our
theory thus seems preferable.

10 De se questions, and how �− can fail

In this section we discuss a natural generalization of probability structures.
These more general structures determine normality structures in which �− can
fail. We then show how these structures can be used to model cases in which
there are independent grounds to think that �− really does fail.

In probability structures, the partition Q of S corresponds to a question
about which state of the world obtains. We can generalize these models by
instead appealing to a partition Q of W , corresponding to a question about
what situation one is in. Let us begin by formalizing this idea before applying
it to an illustrative example.

Definition 10.1. A generalized probability structure is a tuple 〈S, E ,W,Q, P r, t〉
where Q is a partition of W , and S, E , W , Pr, and t are defined as before.

Strictly speaking, probability structures are not generalized probability struc-
tures. But since every partition Q of S determines a unique partition Q of W
(where [〈s, E〉]Q := {〈s′, E′〉 : s′ ∈ [s]Q}), we harmlessly speak as if they are.

To generate normality structures from generalized probability structures,
we modify Definition 8.2 by replacing Q in the characterization of �E with the
partition QE of E induced by Q (where [s]QE

= {s′ : 〈s′, E〉 ∈ [〈s, E〉]Q}):

Definition 10.2. 〈S, E ,W,�,Ï〉 is determined by the generalized probability
structure 〈S, E ,Q,W, Pr, t〉 if and only if:

• s �E s′ iff Pr([s]QE
|E) ≥ Pr([s′]QE

|E);

• ÏE is as in Definition 6.2;

• situations involving different evidence are not related by � or Ï.

This is a generalization of Definition 8.2 because it yields the same normality
relations as the old definition in the special case where Q is determined by a
partition of states Q as described above.

Generalized probability structures offer greater flexibility than probability
structures by, in effect, making the relevant question about the state of the world
be a function of one’s evidence. This in turn has consequences for the logic of
belief revision:

Proposition 21. �− can fail in normality structures determined by generalized
probability structures. ΠR is valid provided t > .5 and �R is valid provided

t >
√

5−1
2 ≈ .62.
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To see why this increased flexibility is desirable, consider the following cases
from Goodman and Salow (2023, §8):

Flipping for All Heads
A coin flipper will simultaneously flip 100 fair coins until they all
simultaneously land heads. Then he will flip no more.

Decay
A radioactive atom is created; eventually, it will decay. The average
time for an atom of this isotope to decay is one year.

Let’s consider what one should believe about how long it will take before all of
the coins land heads together in Flipping for All Heads. (Analogous claims
seem plausible concerning your beliefs about what day the atom will decay in
Decay.) A natural thought is that your beliefs should be two-sided: you believe
that it will happen eventually (i.e. before the yth flip, for some large y) but not
soon (i.e. not before the xth flip, for some 1 < x < y). Moreover, the shape of
these beliefs remains the same as you observe that it hasn’t happened yet: if
you see that the coins don’t all land heads on any of the first n flips, you should
afterwards believe that they won’t all land heads before the (n + x)th flip but
will all land heads before the (n+ y)th flip.

Goodman and Salow (2023) note that, if this is right, then Flipping for
All Heads is a counterexample to �−. For you initially believe that the coins
won’t all land heads before the yth flip; you stop believing this when you see
that they don’t all land heads on the first flip; and yet you initially believed
that they wouldn’t all land heads on the first flip.

We can model this failure of �− using a generalized probability structure:

S = {s1, s2, s3 . . . }.

E =
{
Ei := {si, si+1, si+2 . . .} : i ≥ 1

}
.

Q =
{
{〈sj , Ei〉 : j−i < x}, {〈sj , Ei〉 : x ≤ j−i ≤ y}, {〈sj , Ei〉 : y < j−i}

}
.

Pr({si}) = (1− 1
2100 )i−1( 1

2100 ).

In this model, si is the state in which the coins all land heads together for the
first time on flip i; the possible bodies of evidence settle, at each point, that the
coins haven’t all landed heads together before then; the (three-answer) question
is when will the coins all land heads together: extremely soon, an extremely
long time from now, or in between; and the probability distribution matches
the objective chances before any flips take place. Provided that x is relatively
small and y is very big (with the exact values depending on the threshold t),
the subject will believe at each time (before the thrilling experiment comes to
an end) that the coins will all land heads together neither extremely soon nor
extremely long from then. As time passes, this has different implications for how
long from the start of the experiment it will be before the coins all land heads
together, which is what leads to counterexamples to �−.
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The above model is crude, but the broad shape of its predictions survive
further refinements. For example, a more realistic question might be a little
more fine-grained, perhaps something along the lines of: will it happen on one
of the next 1-10 flips, or on one of the next 11-100 flips, or on one of the next
101-1000 flips, etc. This will yield qualitatively similar predictions. In Goodman
and Salow (2021, Appendix C), we show that there is a mathematically natural
way to make qualitatively similar predictions in Decay using the extremely fine-
grained continuum-valued question how much longer until it decays, provided
that we use the right probability density function.

We call Q a de se question because our situations play a role similar to the
‘centered worlds’ of Lewis (1979), so partitions of W are naturally thought of as
questions that take a stand not only on how the world is but also on where in the
world you are. We make these connections more precise in Appendix B. There
we introduce a natural generalization of normality structures to a multi-agent
setting, which requires explicitly identifying situations with Lewisian centered
worlds (i.e. state/time/agent-triples) with the upshot that no extra machinery
is needed to model self-locating evidence and inductive belief (i.e., evidence and
beliefs concerning not just the state of the world but one’s place in it).

11 Conclusion

We hope to have illustrated the fruitfulness of normality structures for theoriz-
ing about the dynamics of rational belief. They offer natural models of belief
revision, and interface with recent work in traditional epistemology, epistemic
logic, and Bayesian epistemology.

We have also applied the framework to a range of examples. Although few
principles of belief revision have emerged unscathed, three interesting levels of
idealization have emerged. These are (i) the simple probability structures of
§6 (or, equivalently, probability structures satisfying orthogonality), (ii) the
more general class of probability structures motivated in §8, and (iii) the still
more general class of structures involving de se questions described in §10. �R
is valid in all three model classes given the natural assumption that rational

belief requires probability at least
√

5−1
2 (≈ .62). But �− can fail in the last

class of structures, ♦R can fail in the the second and third classes of structures,
and ♦− and �+ can fail in all three classes of structures.

In our view, there is no natural level of idealization for which either ♦− or
�+ holds. This is less surprising in the case of ♦−, where there are purported
counterexamples in the literature and, in our view, a decisive counterexample
in Bias Detection. By contrast, our case against �+ (and frontloading)
is more theoretical. Its failure falls out naturally from probabilistic accounts of
normality, and also from the compelling thought that, typically, strengthening
your evidence makes it reasonable to form new inductive beliefs. In our view, the
intuitive appeal of �+ is an artifact of operating in frameworks that obscure the
distinction between evidence and inductive belief. One of the most important
features of normality structures is keeping that distinction front and center.

34



♦
−

♦
R

�
+

�
−

�
R

Π
+

Π
−

Π
R

A
G

M
3

3
3

3
3

3
3

3

st
a
t
is
m

,
c
o
l
l
a
p
se

,
an

d
c
o
m
pa

r
a
b
il
it
y

3
3

3
3

3
3

3
3

st
a
t
is
m

an
d

c
o
m
pa

r
a
b
il
it
y

7
3

3
3

3
3

3
3

st
a
t
is
m

7
3

3
3

3
3

7
3

w
e
a
k

st
a
t
is
m

7
3

7
7

3
7

7
3

c
o
m
p
.

c
o
l
l
.

st
a
t
.

w
.
st
a
t
.

t
h
r
e
.

P
ro

b
ab

il
it

y
st

ru
ct

u
re

s
an

d
o
r
t
h
o
g
o
n
a
l
it
y

7
3

7
3

3
7

3
3

3
7

7
3

3

P
ro

b
ab

il
it

y
st

ru
ct

u
re

s
7

7
7

3
3

7
7

3
*
*

3
7

7
7

3

G
en

er
al

iz
ed

p
ro

b
ab

il
it

y
st

ru
ct

u
re

s
7

7
7

7
3

*
7

7
3

*
*

3
7

7
7

3

L
o
ck

ea
n

is
m

7
7

7
7

3
*

3
3

3
-

-
-

-
3

S
ta

b
il

it
y

T
h

eo
ry

an
d
o
r
t
h
o
g
o
n
a
l
it
y

3
3

7
3

3
7

3
3

3
7

7
3

3

T
ra

ck
in

g
T

h
eo

ry
an

d
o
r
t
h
o
g
o
n
a
l
it
y

7
3

3
3

3
3

3
3

3
7

3
3

7

T
ra

ck
in

g
T

h
eo

ry
7

7
3

3
3

7
7

7
3

7
7

7
7

L
ev

i’
s

T
h

eo
ry

an
d
o
r
t
h
o
g
o
n
a
l
it
y

7
3

7
3

3
7

3
3

3
7

7
3

7

L
ev

i’
s

T
h

eo
ry

7
7

7
7

3
7

7
7

3
7

7
7

7

S
u

m
m

a
ry

o
f

M
a
in

R
e
su

lt
s:

3
∗

m
ea

n
s

th
a
t

th
e

th
eo

ry
v
in

d
ic

a
te

s
th

e
p

ri
n
ci

p
le

if
th

e
p

ro
b

a
b

il
it

y
th

re
sh

o
ld
t
>
√

5
−

1
2
≈
.6

2
.

3
∗∗

m
ea

n
s

th
at

th
e

th
eo

ry
v
in

d
ic

at
es

th
e

p
ri

n
ci

p
le

if
th

e
p

ro
b

a
b

il
it

y
th

re
sh

o
ld
t
>
.5

.
N

o
te

th
a
t

L
in

a
n

d
K

el
ly

(2
0
1
2
)

a
ss

u
m

e
o
r
t
h
o
g
o
n
a
l
it
y

in
fo

rm
u

la
ti

n
g

th
ei

r
T

ra
ck

in
g

T
h

eo
ry

,
b

u
t

L
ev

i
d

o
es

n
o
t

a
ss

u
m

e
o
r
t
h
o
g
o
n
a
l
it
y

in
fo

rm
u

la
ti

n
g

h
is

th
eo

ry
.

P
ro

of
s

in
A

p
p

en
d

ix
E

.

35



A Learning what you’ve learned

An important moral of thought experiments like the Monty Hall problem is that,
when we learn something about the world, we also learn that we have learned it.
Accommodating this insight using normality structures turns out to correspond
to a non-trivial constraint on the possible bodies of evidence, with substantive
implications for the logic of belief revision.

To illustrate the issue, consider the following example:

Babysitter
Alex and Carole say that they probably can’t both come to your
party: they’ll both come if they can find a babysitter, but otherwise
they will flip a coin to decide which of them will go. All the other
guests have arrived, and the doorbell rings: you are about to look
through the peep hole and you know you’re about to see either of
Alex or Carole (whoever rang the bell).

It is tempting to model this case using a simple probability structure with three
states: b, in which they find sitter and both come, a in which they don’t find
a sitter and only Alex comes, and c in which they don’t find a sitter and only
Carole comes. The two potential discoveries are then {a, b}, which is what you
learn if you see Alex, and {c, b}, which is what you learn if you see Carole.
Suppose that, before answering the door, b has probability .1 and a and c each
have probability .45. So b has probability 2

11 conditional on either of the two
potential discoveries: whatever you learn, the probability that Alex and Carole
found a sitter will increase. For t = .9, this would mean that you will initially
believe that they won’t find a sitter, but you will give up this belief whoever
you see through the peephole.41

This is clearly the wrong result: assuming that Alex and Carole are equally
likely to ring the doorbell if they both come, the probability that they found
a sitter shouldn’t change when you see one of them through the peephole, and
certainly shouldn’t go up no matter what, since you were certain you were going
to see one of them.

The problem is that the model individuates states too coarsely, in a way
that forces it to distort the content of your evidence. When you look through
the peephole, you don’t learn only that Alex came or that Carole came: you also
learn that they rang the doorbell. Since whoever rang the doorbell was certain
to do so if they came alone, but only .5 likely to do so if they came together,
this additional evidence is relevant to whether they came together, and taking
it into account leaves the probability that they came together unchanged.

We can capture this fact in a simple probability structure by individuating
states more finely. We replace the single state b with two states ba and bc, which
differ in who you see through the peephole and which both have probability .05.
The possible discoveries are then {a, ba} and {c, bc}. The probability that they

41Smith (2018b) uses an example similar to Babysitter to argue against Lockeanism on
the grounds that such belief dynamics are intolerable.
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both came – i.e., of {ba, bc} – is then unchanged by conditioning on either of
these two discoveries.42

Reflection on this case suggests a general constraint on normality structures.
Typically, when you make a discovery, you thereby learn that you have made
that discovery. Accommodating such learning in normality structures requires
that states be sufficiently fine-grained to settle what discoveries you will make.
This is tantamount to the requirement that, for any situation 〈s, E〉, s settles
that at some point your total evidence about the state of the world is E. Equiv-
alently, states take a stand on your evidential trajectory : there is a function τ
that maps each state s to the set of possible bodies of evidence that are ever
your total body of evidence when s obtains. Since E is your evidence in 〈s, E〉,
E ∈ τ(s) for all s ∈ E ∈ E . And setting aside the possibility of memory loss or
otherwise losing evidence (a reasonable idealization in the cases we are consid-
ering here), all evidential changes are discoveries and your evidence only ever
increases. So your evidential trajectory is linearly ordered by logical strength: if
E,E′ ∈ τ(s), then either E ⊆ E′ or E′ ⊆ E.

The existence of such a function τ mapping states to evidential trajectories
is equivalent to the following constraint on possible bodies of evidence:43

nestedness: If E,E′ ∈ E and E ∩ E′ 6= ∅, then E ⊆ E′ or E′ ⊆ E.

The problem with the original three-state model of Babysitter is that it failed
to respect this constraint.44

Imposing nestedness has further implications for the logic of belief revision.
Consider the following strengthening of Π−:

C− If C ⊆ E is finite with
⋃
C = E , then B(E ∩ p) ⊆ B(E) for some p ∈ C.

42Babysitter is closely related to the Monty Hall problem, assuming Monty (i) always opens
a door you didn’t select, (ii) always opens a losing door, and (iii) chooses randomly which
door to open when you have selected the winning door. Suppose that, on this occasion, you
select Door 2 and Monty then reveals Door 1 to be a losing door. If your evidence is exhausted
by the fact that Door 1 is a losing door, this should cause you to become .5 confident that
Door 2 is the winning door, generating the incorrect verdict that there is no reason to switch.
If, instead, we think of your evidence as also containing the fact that Monty opened Door 1 –
which had probability 1 conditional on Door 3 being the winning door but only probability .5
conditional on Door 2 being the winning door – this should leave your confidence that Door
2 is the winning door unchanged at 1

3
, generating the correct verdict that you should switch.

43This principle about possible bodies of evidence should be distinguished from the prin-
ciple defended by Dorst (2020) that evidential accessibility is (shift-)nested: if u, v ∈ RE(w)
and RE(u) ∩ RE(v) 6= ∅, then RE(u) ⊆ RE(v) or RE(v) ⊆ RE(u). This holds trivially in
normality structures because in such structures evidence is transparent (although we agree
with Williamson (2019) and Das (2023) that the principle is implausible once that idealization
is relaxed). The idealization underpinning nestedness is stronger, since it can fail in cases of
memory loss where the transparency of evidence is still a reasonable idealization.

44The same is true of our model of Flipping for Heads in §7, which accommodated the
possibility of being informed whether the coin landed heads in the first n flips by simply adding
{s1, . . . , sn} to E, thereby violating nestedness. The resulting model is therefore unrealistic.
As in Babysitter, the solution is to divide states according to whether you are going to watch
the coin as it is flipped or wait to be informed later whether it has landed heads in the first
n flips. Moving to this more realistic model doesn’t disrupt any of our earlier arguments.

37



We saw that this principle failed in the näıve three-state model of Babysitter.
But it is equivalent to Π− given nestedness, and so holds in the modified four-
state structure (since Π− is valid on the class of normality structures determined
by simple probability structures).45

B Multi-agent models and self-location

In this appendix we explain how to give a multi-agent generalization of our
models. Doing so is not entirely straightforward, for the following reason. As
explained in § 2.1, in order to model learning as a decrease in which possibilities
are compatible with one’s evidence, we need to model these possibilities as states
rather than situations. (This is because situations take a stand on what your
evidence is, so after getting new evidence a completely new set of situations
is compatible with your evidence: ones in which you have different, stronger
evidence about the state of the world.) This doesn’t create any problems in the
single-agent case, because we are only interested in agents’ beliefs about the
state of the world, and not in their beliefs about their current evidence.

But in the multi-agent case, we are interested in agents’ beliefs about agents’
evidence: even if we’re working at a level of idealization where every agent’s
evidence is transparent to that agent, different agents’ evidence isn’t transparent
to each other.

A natural and conservative way to handle this issue is to work with the
following more general class of structures:

Definition B.1. A de se normality structure is a tuple 〈S, T,A,W,RE ,�,Ï〉
such that:

1. S is a non-empty set (of states),

2. T is a non-empty set (of times),

3. A is a non-empty set (of agents),

4. W = S × T ×A

5. RE : W → P(W ) such that

(a) w ∈ RE(w)

(b) If v ∈ RE(w), then RE(v) = RE(w).

6. � and Ï are as in the definition of normality structures.

The basic notion of evidence in de se normality structures is evidence about
what situation one is in, represented by RE . By contrast, in (single agent)
normality structures, the basic notion of evidence is evidence about the state,

45Given nestedness, we also have that Π+ entails the following strengthening:

C+ If C ⊆ E is finite with
⋃
C = E , then B(E) ⊆

⋃
p∈C B(E ∩ p).
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represented by E ∈ E . We can recover such a notion in de se normality structures
as E(w) = {s : 〈s, t, a〉 ∈ RE(w) for some t ∈ T and a ∈ A}. We do not assume
that one’s evidence entails who one is or what time it is. These structures can
thus straightforwardly model inductive belief under self-locating uncertainty.

As before, we can restrict our attention to beliefs and discoveries about the
state of the world: B(w) = {s : 〈s, t, a〉 ∈ RB(w) for some t ∈ T and a ∈ A},
with RB defined as in Definition 2.2. A situation 〈s′, t′, a′〉 is the result of learning
p in 〈s, t, a〉 just in case s = s′, a = a′, and E(〈s′, t′, a′〉) = E(〈s, t, a〉)∩p. These
notions allow us to interpret principles about belief revision in de se normality
structures: for example, ♦− says that, if B(w) ∩ p 6= ∅ and v is the result of
learning p in w, then B(v) ⊆ B(w).

It is straightforward to define an analogue of probability structures for de
se normality structures, allowing � and Ï to be determined by a prior Pr over
S, a partition Q of S, and a threshold t ∈ (0, 1] as before. However, in defining
an analogue of generalized probability structures, there is more flexibility: for
example, we might want Pr in addition to Q to be defined over W rather than
S (to accommodate non-trivial self-locating prior probabilities) and/or for Pr
to be a function of A (in order to capture the idea that different agents have
different priors).

C Non-transparent evidence

One of the major (if contested) morals of recent work on skepticism about
the external world is that evidential accessibility isn’t symmetric: when we are
misperceiving, our evidence is compatible with our perceiving, but when we are
perceiving, our evidence is incompatible with things not being as we perceive
them to be; cf. Williamson (2000, chapter 8). In this appendix we consider how
we might modify normality structures to accommodate this kind of evidential
asymmetry.

To theorize about these cases, we introduce the following generalization of
normality structures:

Definition C.1. A generalized normality structure is a tuple 〈S,W,RE ,�,Ï〉
such that:

1. S, �, and Ï are as in the definition of a normality structure,

2. W ⊆ {〈s, E〉 : s ∈ E ⊆ S},

3. RE : W → P(W ) such that:

(a) 〈s, E〉 ∈ RE(〈s, E〉),
(b) If 〈s′, E′〉 ∈ RE(〈s, E〉), then s′ ∈ E,

(c) If 〈s, E〉 ∈W and s′ ∈ E, then 〈s′, E′〉 ∈ RE(〈s, E〉) for some E′.

This definition generalizes normality structures in two ways. First, the mere
fact that a state is compatible with a possible body of evidence doesn’t mean
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that the state is compatible with that being your total body of evidence. Sec-
ond, evidential accessibility needn’t be determined as a matter of having the
same evidence. The first generalization is motivated by the idea that, when you
are misperceiving, your evidence is different than it would be if things were as
you perceived them to be. The second generalization is needed to accommodate
the first: for example, to allow that when you are misperceiving it is compatible
with your beliefs that you are perceiving. The Definition 2.3 of B remains un-
changed, and the present generalization doesn’t disrupt any of our propositions
about the implications of (weak) statism, comparability and collapse;
the determination of generalized normality structures by an appropriately gen-
eralized probability structure goes through as before.

We will now describe a subclass of generalized normality structures that
capture the particular kind of non-transparent evidence associated with misper-
ception, misremembering, and similar cases familiar from recent discussions of
skepticism. In a ‘bad case’ where you are misperceiving that you have hands
(suppose you are a brain in a vat), we can ask what would count as a corre-
sponding ‘good case’ is in which you are perceiving (and so have evidence that)
you have hands. This will be a case where your evidence is stronger than in the
bad case, but no stronger than it needs to be – i.e., it involves perception rather
than illusion, but doesn’t involve any further discoveries. Here is one strategy
for making this idea precise:

Definition C.2. A good/bad structure is a generalized normality structure such
that, if 〈s′, E′〉 ∈ RE(〈s, E〉), then E′ =

⋃
{E′′ ⊆ E : 〈s′, E′′〉 ∈W}.

Good/bad structures are still a generalization of normality structures. They
have two notable properties that are not shared by all generalized normality
structures. The first is that evidential accessibility is transitive – if v ∈ RE(w),
then RE(v) ⊆ RE(w). We think this is an idealization, but a useful one for
isolating the evidential structure distinctive of skeptical scenarios. The second
is that, for any situation and any state compatible with your evidence in that
situation, there is a unique evidentially accessible situation in which that state
obtains. This means that evidential accessibility is recoverable from W . This
affords an alternative characterization of good/bad structures: start with a set
W such that, whenever 〈s, E〉 ∈ W and s′ ∈ E, 〈s′,

⋃
{E′′ ⊆ E : 〈s′, E′′〉 ∈

W}〉 ∈W ; then define RE from W in the obvious way.
This is only a brief and programmatic suggestion for how we might extend

the present framework for theorizing about the dynamics of belief to cases where
evidence is non-transparent. We mention it both as a direction for further re-
search and to illustrate that the transparency of evidence is not an essential
assumption of our framework for theorizing about belief dynamics. That is,
non-transparent evidence is compatible with the two-component way of mod-
elling situations in terms of which we have defined belief and learning about the
state of the world (and also with the use of probability structures to determine
normality relations, as explained in Goodman and Salow (2021, Appendix A)).
That being said, we also think further developments of non-transparent models
of belief dynamics are probably premature, because non-transparent evidence
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raises challenging questions about how to think about synchronic belief in terms
of evidential accessibility and comparative normality, for reasons explained in
Goodman and Salow (in preparation). (In brief, the challenge arises in ‘ab-
normal good cases’, where the asymmetries of evidential accessibility and of
comparative normality push in opposite directions.)

D Other Formalisms

This appendix explains how normality structures can be used to interpret the ∗
operator used to formulate standard theories of belief revision; the relation |∼
of nonmonotonic consequence (conceived as a kind of evidential support); and
the notion of conditional belief.

D.1 AGM

Theories of belief revision, like AGM, are usually formulated in terms of a binary
operator ∗ that, given a set of sentences (your original beliefs) and a sentence
(what you learn), outputs another set of sentences (your updated beliefs). Con-
sider, for example, the following principle of AGM (where φ is a sentence and
A is a set of sentences):

preservation: If ¬ϕ 6∈ A, then A ⊆ A ∗ ϕ.

We can understand such principles involving ∗ in our framework as follows.
Rather than thinking of the objects of belief as sentences, we think of them
as events (i.e. sets of states), interpret ∗ as learning that an event obtains,
and interpret negation and other Boolean connectives using the standard set-
theoretic operations. preservation is then equivalent to ♦−.

Similarly, as advertised in §1, ♦R, �+, �−, and �R are also equivalent to
theorems of AGM recast in the present framework. We saw earlier that all of
those principles are valid in the class of normality structures satisfying statism,
collapse, and comparability. In fact, the same is true for all theorems of of
AGM:

Proposition 22. Under the above translation of claims about ∗ into claims
about the B operator, all theorems of AGM are valid on the class of normality
structures satisfying statism, collapse, and comparability.

This result is unsurprising given the formal parallel between such normality
structures and models of AGM in terms of plausibility orders, originally in-
troduced by Grove (1988). Simplifying slightly but inessentially, these models
consist of a set of worlds equipped with a well-founded total preorder, under-
stood as a relation of comparative plausibility. An agent believes what is true in
the most plausible worlds, and after learning p believes what is true in the most
plausible worlds in which p is true. Given statism we can see worlds as corre-
sponding to our states; given collapse we can see comparative plausibility as
our �. An agent’s initial beliefs being determined by the most plausible of all
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worlds corresponds to requiring that S ∈ E ; comparability is then equivalent
to the claim that the comparative plausibility preorder is total.

D.2 Nonmonotonic consequence

Closely related to belief revision is the large literature on nonmonotonic con-
sequence relations, understood as relations of inductive support.46 Within nor-
mality structures, we can interpret p |∼ q as the claim that, if p is your total
evidence, then you believe q:47

Definition D.1. ϕ |∼ ψ := B(ϕ′) ⊆ ψ′, where ϕ′ and ψ′ result from replacing
Boolean connectives in ϕ and ψ with corresponding set theoretic operations.

This definition allows us to use normality structures as a bridge between
theories of belief revision and theories of nonmonotonic consequence. In partic-
ular, many of the principles discussed in the main text and in Appendix A then
correspond to principles of nonmonotonic logic from Kraus et al. (1990), as per
the following table:48

♦− rational monotony If p |∼ r and p 6 |∼ ¬q, then p ∧ q |∼ r
�+ cut If p |∼ r and p |∼ q, then p ∧ q |∼ r
�− cautious monotony If p |∼ r and p |∼ q, then p ∧ q |∼ r
Π+ weak or If p ∧ q |∼ r and p ∧ ¬q |∼ r, then p |∼ r
Π− negation rationality If p ∧ q 6 |∼ r and p ∧ ¬q 6 |∼ r, then p 6 |∼ r
C+ or If p |∼ q and q |∼ r then p ∨ q |∼ r
C− disjunction rationality If p 6 |∼ q and q 6 |∼ r then p ∨ q 6 |∼ r
front-
loading

s If p ∧ q |∼ r then p |∼ q ⊃ r

Shoham (1987) and especially Kraus et al. (1990) develop a ‘preferential’
semantics for |∼ that is related to our normality structures; roughly, the idea
is that p |∼ q is true just in case {s ∈ p : ∀s′ ∈ p(s′ 6Ï s)} ⊆ q. In the
simplest case, the only constraint on Ï is that it be irreflexive, transitive, and
well-founded; the resulting class of models validates the system P that includes
cautious monotony and cut but not rational monotony. Lehmann and
Magidor (1992) show that further requiring Ï to be modular (if x Ï y, then for
any z either z Ï y or x Ï z) defines the class of such structures that validate
rational monotony as well.

These results parallel Propositions 1 and 2 as follows. The relata of Ï corre-
spond to our states rather than to our situations; so the fact that, in our system,
�− and �+ are validated given statism corresponds to the fact that cautious
monotony and cut are valid in the general class of preferential models. The
basic preferential models build in no constraints corresponding to comparabil-
ity or collapse. So the invalidity of ♦− in our models when these constraints

46Genin (2019) is an excellent entry point to this literature and its relation to belief revision.
47Compare Kraus et al. (1990), Stalnaker (1994) and Smith (2018b). Relatedly, Makinson

and Gärdenfors (1991) interpret p |∼ q as q ∈ A ∗ p, for some salient background theory A.
48Strictly speaking, in the case of Π+, Π−, C+, and C−, the relevant principle of non-

monotonic logic corresponds to the special case where Π or C contain exactly two events.
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are not imposed corresponds to the invalidity of rational monotony in the
class of all preferential models. And imposing comparability and collapse
entails that Ï is modular on evidentially accessible situations.49 So the fact
that ♦− becomes valid when we impose these constraints on normality struc-
tures corresponds to the fact that rational monotony is valid on class of
modular preferential models.

For a more systematic correspondence, let system N be axiomatized by the
following principles:

identity p |∼ p
left logical equivalence If p |∼ r and |= p↔ q, then q |∼ r
right weakening If p |∼ q and q |= r, then p |∼ r
and If p |∼ q and p |∼ r, then p |∼ q ∧ r

The standard System P is then the result of adding or, cautious monotony
and cut to N; and the standard system R is the result of further adding ra-
tional monotony to P.50 We then have the following result:

Proposition 23.

• R is valid on the class of normality structures satisfying statism, com-
parability and collapse.

• P is valid on the class of normality structures satisfying statism.

• N is valid on the class of all normality structures.

Remark D.1. This result depends on the fact that |∼ is defined in terms of B,
which in turn presupposes that the relevant event is a possible body of evidence.
A parallel result does not hold for the relation p |∼ ′ q, defined to mean that
either p 6∈ E or B(p) ⊆ q. For example, consider the following theorem of P:

(†) If p |∼ ⊥, then p ∧ q |∼ ⊥.

This claim is valid on the class of normality structures: it presupposes that
E contains both p and p ∩ q, and it is true in all structures satisfying this
presupposition. By contrast, the parallel principle with |∼ ′ in place of |∼ fails
in normality structures where p 6∈ E but ∅ 6= p ∩ q ∈ E .

Relatedly, although Proposition 23 can be strengthened to a completeness
result for R and P (see Lehmann and Magidor (1992) and Kraus et al. (1990),
respectively), the same cannot be said for N, since (†) is not a theorem of N.

49Assume comparability and collapse. Suppose x Ï y. If z � x, then z Ï y, by the
condition on � and Ï from Definition 2.1.5b and the reflexivity of �. And if z 6� x, then
x � z, by comparability, and hence x Ï z, by collapse. So Ï is modular.

50These axiomatizations are redundant: cut and and are interderivable given the other
axioms of P and cautious monotony is redundant in R given rational monotony.

Smith (2016, 2018b) defends R as a theory of propositional justification (understood as a
kind of evidential support which is in turn understood as a kind of nonmonotonic consequence).
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D.3 Conditional Belief

Closely connected to the topic of belief revision is the topic of conditional belief.
In fact, it is tempting to understand the latter in terms of the former: you believe
p conditional on q if and only if you would believe p after learning q. However,
such an account faces the problem that we can make sense of belief conditional
on q even when q is an event that you couldn’t possibly learn: for example,
events corresponding to claims of the form ‘p but I’ll never learn that p’; see
also Appendix A.

This motivates a different approach. Belief conditional on q can instead be
characterized exactly like belief – in terms of comparative normality and ev-
idential accessibility (via RB and B, as in Definitions 2.2-2.3) – except with
evidential accessibility now restricted to situations in which q obtains. More
precisely:

Definition D.2. Given evidence E, you believe p conditional on q just in case
Bq(E) ⊆ p, where:

Rq
E(w) = {〈s, E〉 ∈ RE(w) : s ∈ q};

Rq
B(w) = {v ∈ Rq

E(w) : ∀u ∈ Rq
E(w)(u Ï v)};

Bq(E) = {s′ : 〈s′, E′〉 ∈ Rq
B(〈s, E〉) for some s ∈ E and E′ ∈ E}.

If statism holds and q is something you could learn, then you now believe
p conditional on q if and only if you would believe p after discovering q. But
this equivalence depends on statism, which we reject. In particular, in the
models motivated in §7, having previously believed p conditional on q is neither
necessary nor sufficient for believing p upon having just learned q. The failures of
frontloading discussed in §7 are counterexamples to the necessity direction.
For a counterexample to the sufficiency direction, modify the Flipping for
Heads thought experiment as discussed in Goodman and Salow (2023, p.138):
you believe that the coin was flipped only once (p) conditional on it being flipped
either once or at least n+ 1 times (q), but after learning q you don’t believe p.

E Proofs

Proof of Proposition 1:

weak statism ⇒ ♦R
Suppose that B(E)∩p6= ∅. We assume weak statism and show that B(E) ∩
B(E ∩ p) 6= ∅.

Take any s1 ∈ B(E) ∩ p. If s1 ∈ B(E ∩ p), we are done. So suppose s1 /∈
B(E ∩ p). Then there must be some s ∈ E ∩ p such that s ÏE∩p s1. Moreover,
at least one such s – call it s2 – must be in B(E ∩ p): otherwise there would, for
each such s, be another such s′ with s′ ÏE∩p s, violating the well-foundedness
of Ï. Since s2 ÏE∩p s1, s2 �E∩p s1, and thus by weak statism, s2 �E s1. So,
since s1 ∈ B(E), s2 ∈ B(E) as well. So s2 ∈ B(E) and s2 ∈ B(E ∩ p), showing
that B(E) ∩B(E ∩ p) 6= ∅.
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statism ⇒ �+ and �−
Suppose that B(E) ⊆ p. We assume statism and show that B(E ∩ p) = B(E).

Suppose first that s1 ∈ B(E∩p), i.e. s1 ∈ E∩p and there is no s2 ∈ E∩p such
that s2 ÏE∩p s1. Since B(E) ⊆ E∩p, this means that there is no s2 ∈ B(E) such
that s2 ÏE∩p s1. By statism, there is then no s2 ∈ B(E) such that s2 ÏE s1.
So s1 ∈ B(E). So B(E ∩ p) ⊆ B(E).

Suppose instead that s1 /∈ B(E ∩ p). Then either s1 /∈ E ∩ p or there is an
s2 ∈ E ∩ p such that s2 ÏE∩p s1. If the former s1 /∈ B(E), since B(E) ⊆ E ∩ p.
If the latter, then, by statism, s2 ÏE s1, and so again s1 /∈ B(E). So B(E) ⊆
B(E ∩ p).
statism, collapse, and comparability ⇒ ♦−
Suppose that B(E)∩p6= ∅. We assume statism, collapse, and comparabil-
ity, and show that B(E ∩ p) ⊆ B(E).

Suppose that s1 ∈ E but s1 /∈ B(E), i.e. there is some s2 ∈ E with s2 ÏE s1.
Let s3 ∈ B(E)∩p. By comparability, either s3 �E s2 or s2 �E s3. If s2 �E s3

then, by collapse, s2 ÏE s3, contradicting s3 ∈ B(E). So s3 �E s2. So
s3 ÏE s1. So, by statism, s3 ÏE∩p s1. So s1 /∈ B(E ∩ p). So B(E ∩ p) ⊆ B(E).

Proposition 2: ♦− fails in the model of Three Friends in §4 (which validates
statism and collapse) and in the model of Flipping for Heads in §5 (which
validates statism and comparability). �+ fails in the modified model of
Flipping for Heads in §7 (in which weak statism and comparability hold).
For a model in which �− fails and weak statism holds: S = {a, b, c}; E =
{S, {a, b}}; a �S b, c and a �{a,b} b (satisfying weak statism); a ÏS b, c and
a 6Ï{a,b} b. B(S) ⊆ {a, b}, but {a, b} = B(S ∩ {a, b}) 6⊆ B(S) = {a}. For a
model in which �R fails and comparability and collapse hold, modify the
previous model by having b Ï{a,b} a with the obvious adjustments: B(S) is
unchanged, but B({a, b}) = {b}, so B(S) ∩B(S ∩ {a, b}) = ∅.

Proof of Proposition 3: comparability and statism ⇒ Π−
Let Π = {p1, . . . , pn} be a finite partition of E. We assume that B(E ∩ pi) 6⊆
B(E) for every i, and show that this assumption leads to contradiction.

By assumption, there is, for each i, some si1 ∈ B(E ∩ pi)\B(E). Since si1 /∈
B(E), there is a corresponding si2 ∈ E such that si2 ÏE si1. Moreover, si2 ≥E si3
for any si3 ∈ E ∩ pi. For, by comparability, either si2 ≥E si3 or si3 ≥E si2;
but if si3 ≥E si2 then si3 ÏE si1, so by statism si3 ÏE∩pi

si1, contradicting
si1 ∈ B(E ∩ pi).

Now consider {si2 : i ≤ n}. This is a finite set, so it contains a ‘minimal’ s, i.e.
an s such that s′ 6>E s for any other member s′. By comparability, this means
that s ≥E si2 for every i. Now, s ∈ pj for some j. But then B(E ∩ pj) ⊆ B(E)
after all. For suppose that s′ ∈ E but s′ /∈ B(E), so that there is some s′′ ∈ E
with s′′ ÏE s′. s′′ ∈ pi for some i, so, by the above, si2 ≥E s′′. But then
s ≥E si2 ≥E s′′ ÏE s′. So s ÏE s′. So by statism, either s′ /∈ pj or s ÏE∩pj s

′.
Either way, s′ /∈ B(E∩pj). So B(E∩pj) ⊆ B(E), contradicting our assumption.
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Remark on Proposition 3: To see why Π must be finite, consider the following
model (specifying ≥ and Ï directly on states, thus satisfying statism):

• S = {〈x, y〉 : x ∈ N, y ∈ {0, 1}}.

• 〈x, y〉 ≥ 〈u, v〉 just in case either y > v or y = v and x ≥ u.

• 〈x, y〉 Ï 〈u, v〉 just in case both y > v and x > u.

• E = {S} ∪ {En = {〈x, 0〉, 〈x, 1〉} : n ∈ N}.

For each n, B(En) = {〈n, 0〉, 〈n, 1〉} 6⊆ {〈x, 1〉 : x ∈ N} = B(S). Yet the model
satisfies statism and comparability, and {En} is a (infinite) partition of S.
(By contrast, the proof of Proposition 7 doesn’t require Π to be finite, since � is
well-founded in normality structures derived from simple probability structures.)

Proof of Proposition 4: Failure in a normality structure satisfying statism
implies failure in a normality structure satisfying statism and collapse.
Consider any normality structure 〈S, E ,W,�,Ï〉 satisfying statism. Let Ï∗

be the reflexive closure of Ï. Then 〈S, E ,W,Ï∗,Ï〉 is a normality structure
satisfying collapse that agrees with the original structure about B. It thus
invalidates any principle invalidated by the original.

The proofs of Propositions 5 and 6 are routine.

Proof of Proposition 7:

weak statism holds in normality structures derived from simple probability
structures

If s, s′ ∈ E and s, s′ ∈ E′, and Pr(E), P r(E′) > 0 then either Pr({s}|E)
Pr({s′}|E) =

Pr({s}|E′)
Pr({s′}|E′) or Pr({s′}) = 0. Either way, Pr({s}|E) ≥ Pr({s′}|E) iff Pr({s}|E′) ≥
Pr({s′}|E′).
�− holds in normality structures derived from simple probability structures.
Immediate from Proposition 11 below.

Π− holds in normality structures derived from simple probability structures.
Suppose 〈S, E ,W,�,Ï〉 is determined by 〈S, E ,W, Pr, t〉. Since weak statism
holds, we may treat � as a relation on states. We write �s for {s′ : s′ � s}, and
observe that s ∈ B(E) if and only if PrE(�s) < t. Note that � is well-founded
in normality structures determined from probability structures.

Suppose for contradiction that Π− fails: B(E∩pi)\B(E) 6= ∅ for each pi ∈ Π.
For each i, let si be some member of B(E∩pi)\B(E), and k be such that sk � si
for all i (which is possible by comparability and the well-foundedness of �).
Since si ∈ B(E ∩ pi), PrE∩pi

(�si) < t. Since �sk ⊆ �si for all i, we have
PrE∩pi

(�sk) ≤ PrE∩pi
(�si) < t. So, by total probability, PrE(�sk) < t. So

sk ∈ B(E), contradicting our assumption that sk ∈ B(E ∩ pk)\B(E).
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Proposition 8: as explained in the main text, statism and �+ fail in models
of Flipping for Heads in which you are told that your initial belief was true.

The proofs of Propositions 9 and 10 are routine.

Proof of Proposition 11: �− holds in all normality structures derived from
probability structures.
Suppose 〈S, E ,W,�,Ï〉 is determined by 〈S, E ,W,Q, Pr, t〉. To establish �−,
we suppose that B(E) ⊆ p, and show that it follows that B(E ∩ p) ⊆ B(E).

Note that if s2 ∈ [s1]Q ∩ E, then s2 �E s1. So if s1 ∈ B(E), [s1]Q ∩ E ⊆
B(E) ⊆ p. So for any s3, if PrE([s1]Q) ≥ PrE([s3]Q), then also PrE∩p([s1]Q) ≥
PrE∩p([s3]Q). So if s3 �E∩p s1 and s1 ∈ B(E), then s3 �E s1 and s3 ∈ B(E).

Moreover, since B(E) ⊆ p, PrE∩p(B(E)) ≥ PrE(B(E)) ≥ t.
Observe that B(E ∩ p) is the minimal X ⊆ E ∩ p such that (i) if s1 ∈ X

and s3 �E∩p s1, then s3 ∈ X, and (ii) PrE∩p(X) ≥ t. By the above, B(E)
satisfies both (i) and (ii); so it contains the minimal such X as a subset. So
B(E ∩ p) ⊆ B(E), as required.

Proposition 12: as explained in the main text, weak statism and ♦R can
fail in models of Bias Detection, and Π− in models of Celebrity Hike.

Proposition13: routine (see also Hawthorne (1996) and Shear and Fitelson
(2019)). Note that we interpret the relevant principles using their English for-
mulations, not in terms of the B operator (which doesn’t make sense in the
Lockean setting, since belief isn’t closed under conjunction).

Proposition 14 is proved in footnote 6.

Proof of Proposition 15:
�+ can fail in stable probablity structures satisfying orthogonality.
This is proved in footnote 36.

♦− is valid in such structures.
Note that B(E ∩ p) is the minimal X ⊆ E ∩ p such that (i) if s ∈ X and
PrE∩p(q) ≥ PrE∩p([s]Q) for q ∈ Q, then q∩E ∩ p ⊆ X, and (ii) PrE∩p(X) ≥ t.
Then if B(E) ∩ p 6= ∅, PrE∩p(B(E) ∩ p) = PrE∩p(B(E)) ≥ t by the stability
condition, so B(E)∩ p meets condition (ii). Moreover, it meets condition (i) by
orthogonality. So B(E) ∩ p contains the minimal X meeting (i) and (ii) as
a subset. So B(E ∩ p) ⊆ B(E) ∩ p ⊆ B(E), as required.

Proposition 16 is immediate from definitions.

Proposition 17: The claims about validities follow from Propositions 1 and
16. The claims about invalidities are established by the counterexamples in the
main text (since ΠR-failures are both Π− and Π+ failures).

Proof sketch of Proposition 18: Normality structures Levi-determined by
probability structures satisfying orthogonality satisfy comparability and
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weak statism, and validate �−, Π−, and ♦R.
weak statism and comparability are routine, and ♦R follows by Proposi-
tion 1. �− holds, roughly, because removing some sufficiently-below-average-
probability states from your evidence cannot make the remaining previously
sufficiently-below-average-probability states no longer such. Π− holds because
a collection of disjoint sets cannot each have a higher average probability than
its union does.

Proof of Proposition 19: �+ can fail in normality structures Levi-determined
by probability structures satisfying orthogonality.
Let S = {a, b, c}, E = {S, {a, b}}, Q = {{a}, {b}, {c}}, and Pr({a}) = 1−x−ε >
Pr({b}) = x > Pr({c}) = ε ≈ 0, where t

3 < x < t
2 . In the Levi-determined

normality structure, B(E) = {a, b} but B({a, b}) = {a}.

Proof of Proposition 20:
�− can fail in normality structures Levi-determined by probability structures.
Let S = {s1, . . . s1100}; Pr uniform; Q = {p, p′, r1, . . . r98}, where p contains 110
states while p′ and each ri contain 10 states. Suppose t > 10

11 . Then B(S) = p.
Now suppose E contains all members of p and of p′, and one member from each
ri. Since E doesn’t rule out any answers to Q, |{q ∈ Q : q∩E 6= ∅}| = |Q| = 100.
And PrE(p′) = 10

218 > t
100 . So p′ ⊆ B(E). So learning E, which you already

believed, results in you giving up the belief that p′ does not obtain.

♦R and ΠR can fail in normality structures Levi-determined by probability
structures.
ΠR fails in Drawing a Card for the same reason as it does for LK-determination.
Since one of the members of the partition was compatible with your initial be-
liefs, ♦R fails as well.

Proposition 21 is proved in the main text.

Proposition 22 is an immediate corollary of Grove (1988), given the parallels
described.

Proposition 23: for P and R, immediate from the parallel between the relevant
class of normality structures and the models of P and R in Kraus et al. (1990)
and Lehmann and Magidor (1992). The proof for N is routine.
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