1 Against T

There is something extremely compelling about the schema:

(T) ‘ϕ’ is true if and only if ϕ.

But now consider the instance of T obtained by replacing the schematic sentence letter ϕ with the sentence L = ‘L is not true’:

(1) ‘L is not true’ is true if and only if L is not true.

By Leibniz’s Law, we have

(2) L is true if and only if L is not true.

And (2) can be reduced to absurdity in classical propositional logic.

At this point, some will give up classical logic. Our view is that this is the wrong reaction: the benefits are not worth the costs. Here is not the place to defend this position at any length, but let us briefly look at some of the relevant considerations. The costs of rejecting classical logic are fairly widely appreciated. For example, the most common strategy for doing so involves giving up the law of excluded middle.\(^1\) Less widely appreciated is that the benefits of rejecting classical logic are not as great as they are often taken to be. For although we can hold on to the letter of T, it is not clear that we can accept it with the interpretation on which it was originally compelling. For example, if we reject the law of excluded middle, then we cannot accept T on the interpretation of ‘if and only if’ as the material biconditional (defined in terms of negation and disjunction), since on that interpretation T entails the law of excluded middle.\(^2\) In fact, we cannot accept T for any conditional →

\(^1\)Paraconsistent strategies keep the law of excluded middle but reject disjunctive syllogism.

\(^2\)Suppose ϕ ⊨ true(ϕ’) and true(ϕ’) ⊨ ϕ. Since even those who reject the law of excluded middle accept the transitivity of ⊨, it follows that ϕ ⊨ ϕ, which is equivalent to the law of excluded middle given the definition of ϕ ⊨ ψ as ¬ϕ ∨ ψ.

Paraconsistent theories like those of Priest (1979) (according to which not everything follows from a contradiction) can have T for ⊨ at the cost of losing the transitivity of ⊨. But since in such systems (i) ⊨ fails to obey modus ponens, and (ii) one can prove the negations of instances of T with → interpreted as ⊨, proponents of such theories are under strong pressure to interpret → in T as something other than the material condition (which is what they in fact do).
that satisfies the following three principles:\(^3\)

\[(\text{PMP}) \quad (\varphi \land (\varphi \rightarrow \psi)) \rightarrow \psi\]

\[(\text{MP}) \quad \text{From } \varphi \rightarrow \psi \text{ and } \varphi, \text{ infer } \psi.\]

\[(\text{CC}) \quad \text{From } \varphi \rightarrow \psi \text{ and } \varphi \rightarrow \chi, \text{ infer } \varphi \rightarrow (\psi \land \chi).\]

We find these principles no less compelling than T, and so we are not convinced that, when understood in terms of a conditional that fails to satisfy them, T is faithful enough to its pre-theoretical motivations to warrant rejecting classical logic in order to salvage it.

None of this is to suggest that non-classical approaches to the semantic paradoxes aren’t worthy of serious consideration. But in this paper we will restrict our attention to classical approaches.

T classically follows from the following two schemata, which most philosophers find no less compelling than T:\(^4\)

\[(\text{M}) \quad \text{‘} \varphi \text{’ means that } \varphi.\]

\[(\text{MT}) \quad \text{If } S \text{ means that } \varphi, \text{ then } S \text{ is true if and only if } \varphi.\]

Since we reject T, we must reject either M or MT.

We are a bit surprised at the extent to which T is emphasized in the literature on the semantic paradoxes whereas M is relatively neglected. After all, the notion of meaning is widely (though not universally) considered to be the more explanatorily fundamental notion for semantic theorizing. In this paper we explore the prospects of maintaining M. Although we will ultimately argue that it is untenable, the situation is subtle. Unlike T, there is no way to derive a contradiction from M without further non-logical assumptions. Of course, MT is one such assumption. But as we will see there are interesting views about the connection between truth and meaning that invalidate MT and are consistent with M. We will begin by describing two such views. We will then consider how the meanings of sentences relate to the norms and practices connecting the use of those sentences to facts about extra-linguistic reality. We will then argue that M is destabilized by reflection on these connections between meaning and use. We conclude by considering some ramifications of our argument, and draw some morals concerning the proper treatment of related intensional paradoxes.

2 Uniqueness and Instantiation

Let ‘\(M(S, \varphi)\)’ abbreviate ‘\(S \text{ means that } \varphi\)’. M then becomes:

\[M('\varphi', \varphi)\]

3 Most theorists who accept T reject PMP for the corresponding conditional for reasons having to do with the Curry paradox. There are other impossibility results too, especially involving the interaction of conditionals and quantifiers; see Field (2013) and Bacon (2013b).

4 See Andjelkovic and Williamson (2000).
Although M is consistent considered on its own, it is inconsistent with the following two attractive schemata:

Uniqueness

\[(M(S, \varphi) \land M(S, \psi)) \rightarrow (\varphi \leftrightarrow \psi) \]

Instantiation

\[\forall p \varphi \rightarrow \varphi[\psi/p], \text{ where } \psi \text{ is a closed sentence free for } p \text{ in } \varphi \]

Although the bound variable ‘p’ is not a nominal variable, but a variable of the same syntactic category as a closed sentence, Instantiation is no less intuitively compelling than its first-order counterpart \(\forall x \varphi \rightarrow \varphi[a/x] \) (for \(a \) an individual constant and \(x \) a nominal variable free for \(a \) in \(\varphi \)).\(^5\) Note also that, given the duality of \(\forall \) and \(\exists \), it is equivalent to the perhaps even more intuitively compelling schema: \(\varphi \rightarrow \exists p \varphi[p/\psi] \).

To derive a contradiction from Uniqueness, Instantiation and the disquotational meaning schema M, consider the sentence \(L^* = \forall p(M(L^*, p) \rightarrow \neg p) \). Suppose, as M requires, that \(L^* \) means that everything it means is not the case. Either (i) everything it means is not the case, or (ii) something it means is the case. It can’t be the former, since (i) itself is meant by \(L^* \), and so (by Instantiation) would have to not be the case if it were the case, which is a contradiction. So there is something \(L^* \) means that is the case. And since it means (i), which is not the case, it both means something that is the case and means something that is not the case (by Instantiation, given the duality of \(\forall \) and \(\exists \)), contradicting Uniqueness. For a formal treatment of this argument see Prior (1961).

This argument is diagnostically valuable, since it suggests two different ways of thinking about the semantic profile of \(L^* \) that are consistent with the relevant instance of M. On the Uniqueness-rejecting conception, \(L^* \) means more than one thing, and the things it means are not all materially equivalent. On the Instantiation-rejecting conception, there is nothing that \(L^* \) means, despite that fact that it means that everything \(L^* \) means is not the case – we cannot existentially generalize on ‘everything \(L^* \) means is not the case’. (Recall the equivalence of universal instantiation and existential generalization noted above.) One might think of this conception as a version of the view that there is no proposition expressed by \(L^* \) because the proposition that everything \(L^* \) means is not the case does not exist. But caution: although this is a helpful heuristic for thinking about such views, we should emphasize that, while some will want to paraphrase quantification into sentence position using nominal quantification over propositions, we prefer to take such quantification as primitive – in any case, we are not here presupposing the availability of any such translation.

We know from the previous section that anyone who accepts M must reject MT. In particular, they must reject the following instance: if \(L \) means that \(L \)

\(^5\)See Prior (1971) for a defense of the intelligibility of quantification into sentence position. Here and elsewhere, we omit corner quotes where there is no danger of confusion.
is not true (as M requires), then L is true if and only if L is not true (a contradiction). This result holds whatever we take truth to be, but it is instructive to consider the details of how MT fails given the not unnatural view that to be true is to mean something that is the case. By an argument parallel to that of the previous paragraph, we can conclude from \textsc{instantiation} that L means something that is the case and means something that isn’t the case, in which case L is true (despite also meaning something that is not the case). If we instead keep \textsc{uniqueness} and go for the \textsc{instantiation}-rejecting view that there isn’t anything that L means, then L isn’t true (despite meaning that it isn’t true).

The view that to be true is to mean something that is the case is not the only possible hypothesis about the connection between meaning and truth. For example, one might instead think that for a sentence to be true is for it to mean something that is the case and not mean anything that isn’t the case. This hypothesis leaves the situation unchanged in many respects: given M, \textsc{instantiation} still allows us to argue that L both means something that is the case and means something that is not the case, and there is still the alternative of rejecting \textsc{instantiation} in order to save \textsc{uniqueness} by denying that L means anything while maintaining that L means that it isn’t true. The main change is that L now comes out untrue whichever strategy is adopted.

Both rejecting \textsc{uniqueness} and rejecting \textsc{instantiation} have impressive pedigrees. For views that reject \textsc{uniqueness}, see Slater (1986), Read (2002) (who traces the view back to Bradwardine), Restall (2008), and Dorr (unpublished). Rejecting \textsc{instantiation} takes a number of forms. One version is analogous to the view according to which names of fictional characters obey a positive free logic; see Bacon (2013a). Just as on that view ‘Pegasus’ refers to Pegasus even though there isn’t anything that it refers to, on the view under consideration ‘$\forall p(M(L^*, p) \rightarrow \neg p)$’ means that $\forall p(M(L^*, p) \rightarrow \neg p)$ even though there isn’t anything that it means. One version of this view, modeled on Russell’s prohibition on impredicativity, weakens \textsc{instantiation} to the following principle:

\textbf{Predicative \textsc{instantiation}}

$\forall p \varphi \rightarrow \varphi[\psi/p]$, where ψ is a quantifier-free closed sentence free for ψ in φ

A different way of rejecting \textsc{instantiation} would be to reject the intelligibility

\footnote{One might think that those who reject \textsc{uniqueness} face a further question of which (if either) of these two proposals about the connection between meaning and truth is the right one. But reflecting on the situation we don’t find this to be productive question. We think that those who reject \textsc{uniqueness} would do best to bar the word ‘true’ as a predicate of sentences when doing semantic theorizing and instead theorize directly about which sentences mean which things and which of those things are the case. Note that this recommendation concerns only ‘true’ as a predicate of sentences, not its use as a predicate of propositions or of speech acts nor the use of the sentential operator ‘it is true that’.

7Note that Russell’s view was more complicated, involving a hierarchy of such principles each corresponding to a different quantifier. Kaplan (1995), Tucker and Thomason (2011), Kripke (2011), and Tucker (2018) express sympathy for some version of this approach; see also Bacon et al. (2016).
of quantification into sentence position.\(^8\)

Before moving on, let us briefly compare the \textsc{instantiation}-denying view sketched above with the more familiar view that keeps MT and rejects the \(L\)-instance of \(M\) on the grounds that \(L\) doesn’t mean anything (and so, given \textsc{instantiation}, doesn’t mean that it isn’t true). The puzzle for the more familiar view is that, according to it, \(L\) is not true, yet in stating this fact its proponents utter \(L\) itself. But why, by their own lights, are they doing this, if the sentence doesn’t mean anything? We don’t want to get into the various ways in which proponents of such views might respond to this challenge (e.g., by postulating some sort of context-sensitivity in \(L\)). Instead, we want to emphasize that proponents of the \textsc{instantiation}-denying view that accepts \(M\) have an answer to the challenge of explaining why they utter \(L\) that is not available to the \(M\)-denying theorist who asserts \(L\): namely, she can say that she asserts \(L\) because \(L\) means that \(L\) true, and \(L\) in fact isn’t true (because there is nothing the case that it means). The availability of this kind of explanation makes the view especially intriguing.

\section{Meaning and assertion}

We are social creatures. We share our knowledge by saying things to one another, and this involves the use of language. Perhaps the most central constraint on semantic theorizing is the following principle connecting the use of sentences to communication:

\begin{itemize}
 \item[(MA)] If \(A\) (sincerely) utters \(S\) and \(S\) means that \(\varphi\) on that occasion of use, then \(A\) thereby asserts that \(\varphi\).
\end{itemize}

(We will reserve ‘assert’ and its cognates for indirect speech reports, as in ‘John asserted that it was raining’ (which could be true because John uttered a German sentence), and ‘utters’ and its cognates for direct speech reports, as in “John uttered ‘It was raining’” (which is true only if John uses a particular English sentence).)

Since meaning is a natural social phenomenon, MA ought to be our starting point in assessing schemata like \(M\). By contrast, the dominant way of theorizing about semantic antinomies is to put forward disquotational schemata like \(T\) and \(M\) as if they were candidate \textit{a priori} axioms. To our mind, this dominant methodology is inappropriate to the contingent and empirical subject matter of natural language semantics – a point we will return to later. For now it suffices to emphasize that everyone should recognize the centrality of MA to a theory.

\(8\)Note however that the following three schemata are also inconsistent in classical first-order logic enriched with a term-forming functor ‘the proposition that. . . ’:

\begin{itemize}
 \item[(E)] ‘\(\varphi\)’ expresses the proposition that \(\varphi\).
 \item[(PT)] The proposition that \(\varphi\) is true if and only if \(\varphi\).
 \item[(U)] If \(S\) expresses \(x\) and \(S\) expresses \(y\), then \(x\) is true if and only if \(y\) is true.
\end{itemize}
of linguistic meaning, whatever one thinks about the status of disquotational schemata.

4 Norms on assertion

One shouldn’t speak falsely. How this platitude is best understood is controversial, but it should not be controversial that there is some important sense in which our linguistic behavior is governed by it. We shall regiment it as follows:

(PA) A properly asserts that φ only if φ.\(^9\)

Not much will turn on the exact details of how proper assertion is understood – for present purposes, we can leave the precise normative force of propriety fairly open. We are also not claiming that PA is in any sense ‘constitutive’ of assertion – for example, perhaps fully proper assertion requires knowledge of what one asserts (in which case PA would follow from the fact that one can only know something if it is the case); see Williamson (2000).

As discussed above in connection to MA, the primary function of uttering declarative sentences is to make assertions. We can thereby assess utterances for propriety in a way that is parasitic on the propriety of the assertions they constitute. In particular:

(PU) If in sincerely uttering S A thereby asserts that φ, then S is properly uttered only if A properly asserts that φ.

Combining MA, PA and PU, we arrive at the following schema linking meaning with the propriety of utterances:

\textbf{Propriety}

If S means that φ, then S is properly uttered only if φ.

This principle is highly plausible on its face independently of its derivability from MA, PA and PU. It will be the main premise of our argument against M.

5 Against M

Anyone who accepts M and Propriety is committed to the following disquotation schema governing the propriety of utterances:

(DP) ‘φ’ is properly uttered only if φ.

But accepting DP puts them in an awkward position.

Consider the instance of DP obtained by replacing both occurrences of φ with the sentence $\alpha = ‘\alpha$ is not properly uttered’:

\(^9\)This principle, governing only assertions that are actually made, should not be confused with the principle that it is assertable that φ only if φ. That principle is arguably false: for example, even if it is never asserted that assertions are sometimes made, that assertions are sometimes made may still be assertable, since, had it been asserted, it would have been the case.
‘α is not properly uttered’ is properly uttered only if α is not properly uttered.

By Leibniz’s law, we obtain:

(4) α is properly uttered only if α is not properly uttered.

from which it classically follows:

(5) α is not properly uttered.

But 5 is α itself. This reveals the combination of Propriety and M (and classical logic) to be untenable. We will now give two different ways of dramatizing the problem. The first operates in the formal mode, the second in the material mode.

If it were proper for us to accept both Propriety and M, then it would be proper to utter α, since α is an immediate consequence of those schemata (as demonstrated by the above derivation) and there is nothing improper in drawing out the immediate consequences of things you properly accept. We have also just shown that, if α means that α is not properly uttered, then α is not properly uttered. So, given the acceptability of Propriety (which we will not question), M is not acceptable if α means that α is not properly uttered. Since whose sympathetic to M think that, if it is acceptable, then α means that α is not properly uttered, their combination of commitments is unstable.

(One could conceivably maintain that M – and hence its instance ‘α means that α is not properly uttered’ – is acceptable while, in light of our argument, denying that α means that α is not properly uttered. Such a view would be bizarre, but it is crucial to realize that it is not inconsistent. It could even be reasonably believed by a non-native English speaker who, without knowing what the English word ‘means’ means, believed on the basis of testimony that M was acceptable. But we will set this view aside for the remainder of the paper, since we don’t imagine anyone will be inclined to maintain it.)

The second tension concerns not the acceptability of the schema M, but merely the claim that α means that α is not properly uttered. A consequence of this claim is that α is not properly uttered. This seems like an interesting fact, worth expressing, and one that readers of this paper ought to be able communicate to their friends. But how are they to do it? The first sentence that comes to mind for them to use is ‘α is not properly asserted’, but since this sentence is α, it cannot be properly asserted. One could instead assert some distinct but semantically equivalent sentence, e.g. (arguably) ‘If α = α, then α is not properly asserted.’ But it doesn’t feel like such a gimmick should be necessary condition for properly expressing this fact. We can turn this feeling into an argument by noting that substituting ‘synonymous with something properly uttered’ for ‘properly uttered’ in the principles invoked above does little to diminish their appeal and would prevent the gimmick from working. Though not a formal inconsistency, this awkwardness is a strong reason to reconsider the view that α means that α is not properly uttered.
6 A belief norm

Some people of a more internalist bent will object to factive norms on assertion like PA. They will prefer norms couched in terms of what agents (perhaps justifiably) believe, such as:

PA$_B$ A properly asserts that φ only if A believes that φ.

Friends of M might hope that replacing PA with PA$_B$ will block the argument of the previous section. But this hope is mistaken.

By reasoning parallel to that of the previous section, it is clear that MA, PA$_B$, PU and M classically entail:

DP$_B$ If A properly utters ‘φ’, then A believes that φ.

Our argument now turns on the sentence $\beta = \text{‘}A \text{ does not believe that A properly utters } \beta\text{’}$. To simplify our argument, we introduce the following abbreviations:

$$p := A \text{ properly utters } \beta$$

$$B\varphi := A \text{ believes that } \varphi.$$

Now consider the instance of DP$_B$ obtained by replacing the schematic sentence letter φ with β:

(6) $p \rightarrow B\neg Bp$.

We now argue as follows:

(7) $B(p \rightarrow B\neg Bp)$

(8) $B(p \rightarrow B\neg Bp) \rightarrow (Bp \rightarrow BB\neg Bp)$

(9) So, $Bp \rightarrow BB\neg Bp$ (from 7,8)

(10) $BB\neg Bp \rightarrow B\neg Bp$

(11) $B\neg Bp \rightarrow \neg Bp$

(12) So, $Bp \rightarrow \neg Bp$. (from 9,10,11)

(13) So, $\neg Bp$. (from 12)

The premises (7), (8), (10), and (11) are justified as follows. Since A is committed to (6), it is not too much of an idealization to assume that they believe it, which gives us (7). Assuming their beliefs are closed under modus ponens gets us (8). (10) is justified by the thought that such a person needn’t be mistaken about what she believes, and (11) by the thought that such a person needn’t be mistaken about what she doesn’t believe – at least in this particular instance.

Since (13) is β itself, we have a version of the tension from the previous section. Let A be some hypothetical internalist proponent of M who is following along with the above argument. In accordance with DP$_B$, they think that they
properly utter β only if they believe that they do not believe that they properly
utter β. And in following along, they end up uttering β. Yet it follows from
things they accept that they don’t believe that they have properly uttered it.
Since they needn’t be bizarrely alienated from or pessimistic about their own
utterances, the natural conclusion is they are mistaken in having the relevant
theoretical commitments.
This completes our argument against M.

7 Intensional paradoxes

There are a number of so-called intensional paradoxes that, although they have
a similar flavor to the semantic paradoxes, depart from them in not explicitly
appealing to disquotational schemata, or to any meta-linguistic notions whatso-
ever. Here is not the place to discuss these paradoxes in any detail. But we do
want to suggest that, at least in many cases, the feeling of paradox is rooted in a
tacit appeal to a disquotational principle like M. As in the case of the explicitly
semanical paradoxes, we want to suggest that the solution is to give up M.

Consider the Epimenidean liar paradox of someone who asserts that they
are asserting something that is not the case. By reasoning parallel to that of
section 2, classical logic and INSTANTIATION allow us to conclude that any such
person both asserts something that is the case and asserts something that is not
the case. That such a conclusion follows by logic alone is shocking indeed, espe-
cially since, unlike the semantic paradoxes, there is no disquotational premise
(or metalinguistic claim whatsoever) used in the derivation. They also have
nothing in particular to do with assertion – the argument goes through just as
well for what we think, seem to assert, hope, write down, etc.

Why, on reflection, do we find this conclusion so puzzling? After all, we
don’t think there is anything puzzling about the impossibility of a Russellian
barber, and the derivation of the above theorem involves formally quite similar
reasoning. The reason, we think, is that there seem to be counterexamples.
For clearly someone unaware of their newly owed massive inheritance could
reasonably utter the sentence ‘The richest person in the building is asserting
something that is not the case’ in an attempt to complain about their dishonest
wealthy roommate. Surely (the thought goes) they would thereby assert that
the richest person in the building is asserting something that is not the case,
without thereby asserting anything materially inequivalent to that!

10See Prior (1961). The argument also doesn’t go by way of doing for propositions something
like what Godel’s diagonal lemma does in generating ‘liar’ sentences, since that argument relies
on the fact that sentences are structured so that it makes sense to substitute expressions into
open sentence. By contrast, all of the above principles are compatible with non-structural
account of propositional(/higher-order) fineness of grain, including the extensional view that
there are only two propositions: the True and the False.
11There are also set theoretic and plural analogues of the paradox. For the former, see
Kripke (2011). On the latter, imagine someone two (non-distributively) thinks about the
plurality of all and only the people who are (non-distributively) thinking about a plurality
of people that they are not among. It follows by Priorian reasoning that any such person is
thinking about two pluralities of people, only one of which he is a member of.
But suppose we reject M. Clearly in such a circumstance our protagonist
would assert all and only what ‘The richest person in the building is asserting
something that is not the case’ meant on that occasion of use. But without M,
why think that it would mean that the richest person in the building is asserting
something that is not the case? Just as L provides an example of a sentence
containing semantic vocabulary that cannot satisfy T, likewise instantation
and the analogue of uniqueness for our protagonist’s utterance entail that
their utterance is a counterexample to M, presumably owing to its intensional
vocabulary.

This diagnosis generalizes. The reason it strikes us as possible that certain
things could be uniquely asserted/fear/etc., is usually that we imagine some-
one uttering or subvocalizing a sentence and judging that it could mean the
same as the English sentence that appears in the derivation of the surprising
limitative result. But without M, we will not be able to disquote the sentence
in question, and so will not find any inconsistency between the limitative result
and the underlying facts of the thought experiment.

8 Context sensitivity

Pretty much every sentence of natural language is context sensitive, in the
sense that, consistent with the conventions of the language, it can mean dif-
ferent things on different occasions of use. For example, ‘I am hungry’ means
something about you when uttered by you but not when uttered by someone
else. This shows that the bearers of meaning aren’t sentences, but rather par-
ticular utterances of sentences (or perhaps pairs of sentences and contexts,). It
would clearly be a disaster to try to disquote the utterances of people in other
contexts, who mean different things by their words than you do. For example,
speeches like ‘John’s utterance of “I am hungry” means that I am hungry’ are
not in general true unless the person referred to by ‘John’ is the one making the
speech.

Considerations of context sensitivity might seem to call into question the
appropriateness of disquotational principles altogether. But that reaction is too
quick, since when it is John (the referent of ‘John’) himself who makes the dis-
quotational speech above, the speech regains its plausibility. More generally,
while disquotational attributions of meanings to utterances are not always ac-
ceptable, they are at least prima facie acceptable in the special case where the
attribute is made in the same context as the utterance itself. In this section
we will consider how our arguments apply to disquotational principles modified
to take account of context-sensitivity.

Relativizing to contexts (understood, roughly, as circumstances in which
utterances are made) in the way suggested above does nothing to help the
disquotationalist about truth, since the sentence $L_i = ‘L_i is not true in this
context’ renders the modified schema T_i (below) classically inconsistent for
the same reasons that L renders T inconsistent.

12See Field (forthcoming) for further discussion.
(T₁) ‘ϕ’ is true in this context if and only if ϕ.

But just as M is more resistant to paradox than T, it is natural to wonder about the analogous modification of the M schema:

(M₁) ‘ϕ’ means that ϕ in this context.

Unlike M, this principle doesn’t allow us to derive DP from MA, PA and PU, but only the schema:

(DP₁) ‘ϕ’ is properly uttered in this context only if ϕ.

Does the retreat from DP to DP₁ afford proponents of M₁ a way to resist the analogue of our argument against M?

We think not. For we can still reason as follows, where αᵢ = ‘αᵢ’ is not properly uttered in c and c is the context of the first line of the following derivation. By DP₁, we have:

(3ᵢ) ‘αᵢ’ is not properly uttered in c is properly uttered in this context only if αᵢ is not properly uttered in c.

By Leibniz’s law (substituting c and αᵢ), we obtain:

(4ᵢ) αᵢ is properly uttered in c only if αᵢ is not properly uttered in c.

from which it classically follows:

(5ᵢ) αᵢ is not properly uttered in c.

On the face of it the proponent of Mᵢ is in the same uncomfortable position that they faced from the parallel conclusion in section 5. As before this can be dramatized in several ways.

5ᵢ is αᵢ itself, and c is the context in which we just uttered it, namely the context of the above derivation. Suppose our imagined proponent of Mᵢ follows along with our derivation above in the same context as us. In so doing they end up uttering αᵢ in c, having just derived it from a premise they accept. But we have just seen αᵢ is not properly uttered in c, given the assumption that αᵢ means in c that αᵢ is not properly uttered in c (an assumption they will accept). So if the imagined proponent of Mᵢ is right, then they have done something improper. So their overall combination of commitments is untenable.

A natural strategy for resisting this argument is by denying that c is the context in which they end up asserting αᵢ. In starting out in context c and running through steps 3ᵢ-5ᵢ out loud we at some point switched to a different context c’, in which αᵢ was properly asserted. This proposal raises a number of questions – for example, what is the mechanism driving the context shift in these kinds of situations? – to which we cannot think of a principled answer. And regardless of questions of mechanism, there are other reasons to think that this maneuver is unsatisfactory, as we will now argue.

Any proponent of Mᵢ faces an analogue of the expressive worry from section 5: namely, to properly express the claim, to which they are committed, that αᵢ.
is not properly uttered in \(c \). The present proposal is that we have already done this by uttering \(\alpha_i \) as part of the above derivation, because that utterance was made in a context \(c' \) distinct from \(c \) in which it is properly uttered. Note that in making this response our theorist is committed to the following:

(i) \(\alpha_i \) means in \(c \) that \(\alpha_i \) is not properly uttered in \(c \)

(ii) \(\alpha_i \) means in \(c' \) that \(\alpha_i \) is not properly uttered in \(c \)

(iii) \(\alpha_i \) is properly uttered in \(c' \) but not in \(c \).

But given (i) and (ii), how is it that \(\alpha_i \) is not properly uttered in \(c \) but is properly uttered in \(c' \)? If we would have said the same thing by uttering \(\alpha_i \) in either context, and we are just as knowledgeable in both, it is hard to see why we can properly assert it in \(c' \) but not \(c \).\(^{13}\) The most straightforward explanation would be that by asserting \(\alpha_i \) in \(c \) we would have asserted additional unassertable propositions that we did not assert by uttering \(\alpha_i \) in \(c' \). This proposal is at odds with orthodox contextualist treatments of the liar, since such accounts subscribe to the assumption that sentences express at most one proposition in each context. This shows that the most natural contextualist strategy for maintaining \(M_i \) involves rejecting the principle Uniqueness from section 2.\(^{14}\)

Moreover there is a stronger objection to the contextualist strategy that doesn’t turn on the question of Uniqueness. Consider the following principle:

If \(A \) would not be properly uttered if made in a context \(c \) and is a logical consequence of a sentence \(B \) then \(B \) would not be properly uttered if made in \(c \) either.

This principle is pretheoretically compelling, and it follows from the orthodox conception of contexts as determining assignments of meanings to sentences of the language in such a way that if the context assigns a true proposition to a sentence, it assigns a true proposition to every logical consequence of that sentence.\(^{15}\)

From this principle we can argue that the instance \(3_i \) of DP\(_i \) was not properly uttered in \(c \) (i.e., in the beginning of the above derivation). For suppose it was properly uttered in \(c \). Since the relevant identities (‘\(c = \) this context’ and ‘\(\alpha_i \)

\[^{13}\]We are not claiming that for any reasonable sense of ‘assertable’, if a sentence means the same thing in two contexts then it is properly utterable in both or in neither. For example, notions of assertability that take into account issues of politeness won’t be like this; but that is not the notion we are operating with and, in any case, there is no such contrast between \(c \) and \(c' \) as regards \(\alpha_i \). Another way this could happen would be if the sentence expresses a proposition that is true at the time of one context but false at the time of the other context, or that we know at only one of those times; but, again, this is not happening in the case of \(\alpha_i, c \) and \(c' \).

\[^{14}\]It is less clear how denying Instantiation might afford the contextualist an explanation of the contrast in propriety of \(\alpha_i \) between \(c \) and \(c' \).

\[^{15}\]Perhaps not every sentence receives a meaning in every context, but if so this fact does not diminish the plausibility of the idea that if a sentence does mean something in a context, and indeed means something true, then every logical consequence of it in that context means something true too (at least if it contains no new vocabulary).
αi is not properly uttered in c” clearly could be properly uttered in c, so too could their conjunction with 3i, of which αi is a logical consequence. But according to the position under consideration, αi would not have been properly uttered in c.16 So by the above principle, 3i was not properly uttered when made in c. This is a reductio of our assumption that 3i was properly uttered in c. Since 3i is an instance of DP, this undermines the propriety of that schema, and hence of M, from which that schema was derivable given what we claim should be uncontroversial principles connecting meaning and assertion: MA, PA and PU.

Note that even if one were to deny one of the premises of this argument in order to save the propriety of M, doing so would strip that disquotational schema of the theoretical importance that its proponents tend to claim for it. This is because it would confine the proper acceptance of its instances to contexts in which even elementary logical deductions cannot be carried out, and so in which sustained semantic theorizing is not possible.

9 Conclusion

The situation regarding the disquotational meaning schema M is more subtle than the situation regarding the disquotational truth schema T. Although we think that both should be rejected, and in particular that one should not accept the instances of M involving α, we have not argued that one should accept the negation of that instance of the schema. This is in contrast to the case of T, for which we do accept the negation of one of its instances: we accept the negation of its instance involving the liar sentence, it being a theorem of classical logic. Nothing we’ve said entails the negation of any particular instance of M. Of course, if we were to accept MT, then we would have to reject the instance of M involving the liar sentence. But MT is most clearly motivated by the combination of Uniqueness and Instantiation, neither of which was an assumption of our argument against M. By appealing to norms linking meaning and assertion, our argument bypassed those principles – which is a good thing, since in our view Uniqueness and Instantiation have not earned the orthodox status that they arguably enjoy.

References

16We have here been sliding between what was properly asserted and what would be properly asserted in a given context. We don’t think anything of substance turns on this, although as noted in footnote 9 there are special cases where it is important to distinguish principles about proper assertion from proper assertability.

