A Theory of Aboutness

Jeremy Goodman (USC)

The theory is formulated in a simply relationally typed higherorder language, in which e is a type, every finite sequence of types is a type, and nothing else is a type. Type indications are suppressed using the convention that lowercase " x "s are always of type e and all other letters are 'typically ambiguous', so that any uniform substitution of closed terms for schematic letters yielding a well-formed formula counts as an instance of a schema.

1 Decomposition

$y=z:=\forall X(X y \leftrightarrow X z)$
UNIQUE QUALITATIVE DECOMPOSITION $\left(\mathcal{Q} R \wedge \mathcal{Q} S \wedge R x_{1} \ldots x_{n}=S x_{1} \ldots x_{n} \wedge \bigwedge_{i \neq j} x_{i} \neq x_{j}\right) \rightarrow R=S$

2 Aboutness

$\mathcal{A}(p, x):=\exists F(p=F x) ; \mathcal{A}(F, x):=\exists R(F=(\lambda y \cdot R y x)) ;$ etc. QUALITATIVENESS qua ABOUTNESSLESSNESS $\mathcal{Q} X \leftrightarrow \neg \exists x \mathcal{A}(X, x)$

Consequences:
i) $\mathcal{Q} p \rightarrow p \neq(\lambda x . p) x$
ii) $\mathcal{Q} p \rightarrow p \neq(p \wedge(F x \vee \neg F x))$

UNIQUE EXTRACTABILITY
$\mathcal{A}(X, x) \rightarrow \exists!Y\left(\neg \mathcal{A}(Y, x) \wedge X=\left(\lambda y_{1} \ldots y_{n} . Y y_{1} \ldots y_{n} x\right)\right)$
atomic aboutness
$\mathcal{A}\left(X y_{1} \ldots y_{n}, x\right) \rightarrow \mathcal{A}(X, x) \vee \mathcal{A}\left(y_{1}, x\right) \vee \cdots \vee \mathcal{A}\left(y_{n}, x\right)$
where $\mathcal{A}(x, y):=x=y$

3 Coarseness

NON-VACUOUS- β
$(\lambda y . \varphi) a=\varphi[a / y]$, provided y occurs free in φ
Consequences:
i) $(\lambda x \cdot y=x) y=(\lambda x \cdot x=x) y$
ii) $(\lambda x y \cdot x=x \wedge y=y) z z=(\lambda x y \cdot x=y \wedge x=y) z z$
iii) $(\lambda X . X=X)(\lambda p . p)=(\lambda X . X(X=X))(\lambda p . p)$
iv) $X=(\lambda y z . X z y) \rightarrow(\lambda Y . Y=Y) X=(\lambda Y . Y=(\lambda y z . Y z y)) X$
$p \equiv_{L} q:=p \wedge q=p \vee q$
$p \equiv{ }_{N} q:=p \vee \neg p=q \vee \neg q$
TWO-DIMENSIONALISM
$p \equiv{ }_{L} q \wedge p \equiv_{N} q \rightarrow p=q$
BOOLEAN LOGICAL CONTENT
$\varphi \equiv_{L} \psi$, whenever $\varphi \leftrightarrow \psi$ is a theorem of propositional logic
OBJECTUAL NON-LOGICAL CONTENT
$p \equiv_{N} q \leftrightarrow \forall x(\mathcal{A}(p, x) \leftrightarrow \mathcal{A}(q, x))$

4 Modalities

$\square p:=p=(p \rightarrow p)$
$\square \varphi$, whenever φ is a theorem of classical higher-order logic
We have the necessity of identity, so the logic of \square includes S4; but it is weaker than $S 5$, because the theory proves:

THE POSSIBILITY OF IDENTITY ${ }^{1}$
$\diamond(x=y)$

$$
\diamond(x=y)
$$

which given the existence of at least two individuals (which is consistent in the theory) is inconsistent with the necessity of distinctness, which follows from the necessity of identity in S5.

[^0]
[^0]: ${ }^{1}$ Proof: Obvious if $x=y$, so assume $x \neq y \cdot \mathcal{Q}(\lambda x y \cdot \neg(x=y))$ and $\mathcal{Q}(\lambda x y . \neg(x=y) \rightarrow \neg(x=y))$. But $(\lambda x y . \neg(x=y)) \neq(\lambda x y . \neg(x=y) \rightarrow$ $\neg(x=y))$. So by UNIQUE QUALITATIVE DECOMPOSITION, $(\lambda x y . \neg(x=y)) x y \neq$ $(\lambda x y . \neg(x=y) \rightarrow \neg(x=y)) x y$; hence $\neg \square \neg(x=y)$, by NON-vACUOUS- β.

